精英家教網 > 初中數學 > 題目詳情

已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).

(1)直接寫出拋物線解析式;

(2)如圖,將拋物線向右平移k個單位,設平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.

①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;

②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

 

【答案】

解:(1)y=﹣x2+4。

(2)①如圖,連接CE,CD,

∵OD是⊙C的切線,∴CE⊥OD。

在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,

∴∠EDC=30°。

∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,

∴OC=。

∴當直線OD與以AB為直徑的圓相切時,k=OC=。

②存在k=,能夠使得點O、P、D三點恰好在同一條直線上。理由如下:

設拋物線y=﹣x2+4向右平移k個單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點P,

由﹣(x﹣k)2+4=﹣x2+4,解得x1=,x2=0(不合題意舍去)。

當x=時,y=﹣k2+4。

∴點P的坐標是(,﹣k2+4)。

設直線OD的解析式為y=mx,把D(k,4)代入,得mk=4,解得m=。

∴直線OD的解析式為y=x。

若點P(,﹣k2+4)在直線y=x上,得﹣k2+4=,解得k=±(負值舍去)。

∴當k=時,O、P、D三點在同一條直線上。

【解析】

試題分析:(1)∵拋物線的頂點為(0,4),∴可設拋物線解析式為y=ax2+4。

又∵拋物線過點(2,0),∴0=4a+4,解得a=﹣1!鄴佄锞解析式為y=﹣x2+4。

(2)①連接CE,CD,根據切線的性質得出CE⊥OD,再解Rt△CDE,得出∠EDC=30°,然后Rt△CDO,得出OC=,則k=OC=。

②設拋物線y=﹣x2+4向右平移k個單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點P,先求出交點P的坐標是(,﹣k2+4),再利用待定系數法求出直線OD的解析式為y=x,然后將點P的坐標代入y=x,即可求出k的值。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線的頂點為M(5,6),且經過點C(-1,0).
(1)求拋物線的解析式;
(2)設拋物線與y軸交于點A,過A作AB∥x軸,交拋物線于另一點B,則拋物線上存在點P,使△ABP的面積等于△ABO的面積,請求出所有符合條件的點P的坐標;
(3)將拋物線向右平移,使拋物線經過點(5,0),請直接答出曲線段CM(拋精英家教網物線圖象的一部分,如圖中的粗線所示)在平移過程中所掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關系,并說明理由.
(3)如圖2,設點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線的頂點為(-1,-2),且通過(1,10),則這條拋物線的表達式為( 。

查看答案和解析>>

同步練習冊答案