【題目】如圖,平面直角坐標系中,以點C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點.
(1)求A,B兩點的坐標;
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,B,試確定此二次函數(shù)的解析式.
【答案】解:(1)如圖,過點C作CM⊥x軸于點M,則MA=MB,連接AC,
∵點C的坐標為(2,),∴OM=2,CM=。
在Rt△ACM中,CA=2,∴。
∴OA=OM﹣AM=1,OB=OM+BM=3。
∴A點坐標為(1,0),B點坐標為(3,0)。
(2)將A(1,0),B(3,0)代入y=x2+bx+c得
,解得。
∴二次函數(shù)的解析式為y=x2﹣4x+3。
【解析】
試題(1)連接AC,過點C作CM⊥x軸于點M,根據(jù)垂徑定理得MA=MB;由C點坐標得到OM=2,CM=,再根據(jù)勾股定理可計算出AM,可可計算出OA、OB,然后寫出A,B兩點的坐標。
(2)利用待定系數(shù)法求二次函數(shù)的解析式。
科目:初中數(shù)學 來源: 題型:
【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.
(1)求甲、乙兩倉庫各存放原料多少噸?
(2)現(xiàn)公司需將300噸原料運往工廠,從甲、乙兩個倉庫到工廠的運價分別為120元/噸和100元/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運價可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運價不變,設(shè)從甲倉庫運m噸原料到工廠,請求出總運費W關(guān)于m的函數(shù)解析式(不要求寫出m的取值范圍);
(3)在(2)的條件下,請根據(jù)函數(shù)的性質(zhì)說明:隨著m的增大,W的變化情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角頂點C在邊OA上,點D在邊OB上,點F在邊AB上,如果△CDF的面積是△AOB的面積的,OD=2,則△AOB的面積為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊△ABC,D是BC上一點,E是平面上一點,且DE=AD,∠ADE=60°,連接CE.
(1)當點D是線段BC的中點時,如圖1.判斷線段BD與CE的數(shù)量關(guān)系,并說明理由;
(2)當點D是線段BC上任意一點時,如圖2.請找出線段AB,CE,CD三者之間的數(shù)量關(guān)系,并說明理由;
(3)當點D在線段BC的延長線上時,如圖3,若△ABC邊長為6,設(shè)CD=x,則線段CE= (用含x的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是學習分式方程應(yīng)用時,老師板書的問題和兩名同學對該題的解答.(老師找聰聰和明明分別用不同的方法解答此題)
(1)聰聰同學所列方程中的表示_______________________________________.
(2)明明一時緊張沒能做出來,請你幫明明完整的解答出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,以的一邊為邊畫等腰三角形,使得它的第三個頂點在的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多可畫幾個?( )
A.9個B.7個C.6個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com