【題目】已知一次函數(shù)ykxb(k≠0)圖象過點(0,2)yx增大而減小,且與兩坐標軸圍成的三角形面積為2,則一次函數(shù)的解析式為________

【答案】y=-x2

【解析】

先根據(jù)一次函數(shù)y=kx+bk0)圖象過點(0,2)可知b=2,再用k表示出函數(shù)圖象與x軸的交點,利用三角形的面積公式求得k的值,再根據(jù)yx增大而減小,可知k<0,由此即可得答案.

∵一次函數(shù)y=kx+bk0)圖象過點(0,2),

b=2,

y=0,則x=-,

∵函數(shù)圖象與兩坐標軸圍成的三角形面積為2

×2×|-|=2,即|-|=2,

k=±1,

∵根據(jù)yx增大而減小,

k0,

k=-1

所以此函數(shù)的解析式為: y=-x+2,

故答案為:y=-x+2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD△ABC的中線,AE∠BAD的角平分線,DF∥ABAE的延長線于點F,則DF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.

1)作出△ABC關于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標;

2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;

3)觀察△A1B1C和△A2B2C2,它們是否關于某直線對稱?若是,請用實線條畫出對稱軸。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,平行四邊形OABC的頂點C(3,4),邊OA落在x正半軸上,P為線段AC上一點,過點P分別作DE∥OC,F(xiàn)G∥OA交平行四邊形各邊如圖.若反比例函數(shù) 的圖象經(jīng)過點D,四邊形BCFG的面積為8,則k的值為( )

A.16
B.20
C.24
D.28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(3,﹣3),點B的坐標為(﹣1,3),回答下列問題

(1)C的坐標是

(2)B關于原點的對稱點的坐標是

(3)ABC的面積為

(4)畫出△ABC關于x軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛小汽車在高速公路上從靜止到起動10秒內(nèi)的速度經(jīng)測量如下表:

(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

(2)如果用T表示時間,V表示速度,那么隨著T的變化,V的變化趨勢是什么?

(3)T每增加1秒,V的變化情況相同嗎?在哪1秒鐘,V的增加最大?

(4)若高速公路上小汽車行駛速度的上限為120千米/小時,試估計大約還需幾秒這輛小汽車的速度就將達到這個上限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在第一象限內(nèi),點P(2,3),M(a,2)是雙曲線y= (k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時間?
(2)求線段AB對應的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時時離目的地多遠?

查看答案和解析>>

同步練習冊答案