【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo);
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實線條畫出對稱軸。
【答案】(1)如圖,△A1B1C1即為所求,頂點C1的坐標(biāo)為(1,1);
(2)如圖,△A2B2C2即為所求,頂點C2的坐標(biāo)為(5,1);
(3)△A1B1C1和△A2B2C2關(guān)于直線x=3對稱如圖:
【解析】
試題(1)根據(jù)軸對稱的性質(zhì)作出A、B、C關(guān)于y軸的對稱點,A1、B1、C1,順次連接畫圖,并找到坐標(biāo)即可.(2)根據(jù)平移的性質(zhì)將A、B、C按平移條件找出它的對應(yīng)點A2、B2、C2,順次連接畫圖,并找坐標(biāo)即可.(3)觀察圖象即可得△A1B1C1和△A2B2C2,關(guān)于直線x=3對稱.
試題解析:(1)如圖,各頂點的坐標(biāo)為:A1(0,4) B1 (2,2) C1(1,1);
(2)如圖,各頂點的坐標(biāo)為:A2 (6,4) B2 (4,2) C2(5,1);
(3)是關(guān)于某直線對稱,對稱軸是直線x=3.如圖.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi)四個點A,B,C,D.
(1)利用尺規(guī),按下面的要求作圖.要求:不寫畫法,保留作圖痕跡,不必寫結(jié)論.
①作射線AC;
②連接AB,BC,BD,線段BD與射線AC相交于點O;
③在線段AC上作一條線段CF,使CF=AC﹣BD.
(2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線段AB+BC>AC,得出這個結(jié)論的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是吊車在吊一物品時的示意圖,已知吊車底盤CD的高度為2米,支架BC的長為4米,且與地面成30°角,吊繩AB與支架BC的夾角為75°,吊臂AC與地面成75°角.
(1)求證:AB=AC
(2)求吊車的吊臂頂端A點距地面的高度是多少米?(保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣2,9).
(1)畫出△ABC,并求出AC所在直線的解析式.
(2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△A1B1C1 , 并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們知道,任意兩點關(guān)于它們所連線段的中點成中心對稱,在平面直角坐標(biāo)系中,任意兩點P(x1,y1)、Q(x2,y2)的對稱中心的坐標(biāo)為(,).
觀察應(yīng)用:
(1)如圖,在平面直角坐標(biāo)系中,若點P1(0,﹣1)、P2(2,3)的對稱中心是點A,則點A的坐標(biāo)為 ;
(2)另取兩點B(﹣1.6,2.1)、C(﹣1,0).有一電子青蛙從點P1處開始依次關(guān)于點A、B、C作循環(huán)對稱跳動,即第一次跳到點P1關(guān)于點A的對稱點P2處,接著跳到點P2關(guān)于點B的對稱點P3處,第三次再跳到點P3關(guān)于點C的對稱點P4處,第四次再跳到點P4關(guān)于點A的對稱點P5處,…則點P3、P8的坐標(biāo)分別為 、 .
拓展延伸:
(3)求出點P2012的坐標(biāo),并直接寫出在x軸上與點P2012、點C構(gòu)成等腰三角形的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D,E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論: ①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2 .
其中一定正確的是( )
A.②④
B.①③
C.①④
D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
【1】求證:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com