在△ABC中,cosB=,AB=8cm,AC=5cm,則△ABC的面積=    cm2
【答案】分析:由已知cosB=,得∠B=30°,又AB=8cm,AC=5cm,由直角三角形求得BC,從而求出△ABC的面積.
解答:解:過點A作AD⊥BC,
∵cosB=,
∴∠B=30°,
故AD=AB=4cm,
又∵AB=8cm,AC=5cm,
∴CD==3(cm),
BD===4(cm),
C′D==3(cm),
∴BC=(4+3)(cm),
BC′=(4-3)(cm),
所以△ABC的面積為:BC•AD=×(4+3)×4=(8+6)cm2
△ABC′的面積為:BC′•AD=×(4-3)×4=(8-6)cm2
故答案為:8+6,8-6.
點評:此題考查了解直角三角形,解題關(guān)鍵是由已知先確定△ABC的邊長BC進而得出面積即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,sinB=cos(90°-C)=
1
2
,那么△ABC是( 。
A、等腰三角形
B、等邊三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,將四邊形ACBD沿直精英家教網(wǎng)線EF折疊,使D與C重合,CE與CF分別交AB于點G、H.
(1)求證:△AEG∽△CHG;
(2)若BC=1,求cos∠CHG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)已知:在△ABC中,AB=AC,點D為BC邊的中點,點F是AB邊上一點,點E在線段DF的延長線上,點M在線段DF上,且∠BAE=∠BDF,∠ABE=∠DBM.

(1)如圖1,當(dāng)∠ABC=45°時,線段DM與AE之間的數(shù)量關(guān)系是
AE=
2
MD
AE=
2
MD
;
(2)如圖2,當(dāng)∠ABC=60°時,線段DM與AE之間的數(shù)量關(guān)系是
AE=2MD
AE=2MD
;
(3)①如圖3,當(dāng)∠ABC=α(0°<α<90°)時,線段DM與AE之間的數(shù)量關(guān)系是
DM=cosα•AE
DM=cosα•AE
;
②在(2)的條件下延長BM到P,使MP=BM,連結(jié)CP,若AB=7,AE=2
7
,求sin∠ACP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=10,cos∠ABC=
3
5
,點D在AB邊上(點D與點A,B不重合),DE∥BC交AC邊于點E,點F在線段EC上,且EF=
1
4
AE,以DE、EF為鄰邊作平行四邊形DEFG,連接BG.設(shè)AE=x,△DBG的面積為y,則y與x的函數(shù)關(guān)系式為
y=-
3
25
x2+
6
5
x
y=-
3
25
x2+
6
5
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,由直角三角形邊角關(guān)系,可將三角形面積公式變形,
即:S△ABC=
1
2
AB×CD

在Rt△ACD中,∵sinA=
CD
AC
,
∴CD=bsinA
S△ABC=
1
2
bc×sin∠A
.①
即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖2,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
1
2
AC×BC×sin(α+β)=
1
2
AC×CD×sinα+
1
2
BC×CD×sinβ

即AC×BC×sin(α+β)=AC×CD×sinα+BC×CD×sinβ.②
請你利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD,只用∠α、∠β、∠α+∠β的正弦或余弦函數(shù)表示(直接寫出結(jié)果).
(1)
sin(α+β)=sinα×cosβ+cosα×sinβ
sin(α+β)=sinα×cosβ+cosα×sinβ

(2)利用這個結(jié)果計算:sin75°=
6
2
4
6
2
4

查看答案和解析>>

同步練習(xí)冊答案