圓的半徑為R,它的內接正三角形的邊長為________.

R
分析:作輔助線,構建直角三角形,利用三角函數(shù)可求出.
解答:解:
經(jīng)過正三邊形的中心O作邊AB的垂線OC,則∠O=60度;在直角△OBC中,根據(jù)三角函數(shù)得到AB=2•OBsin60°=R,內接正三角形的邊長為R.
點評:正多邊形的計算一般要經(jīng)過中心作邊的垂線,并連接中心與一個端點構造直角三角形,把正多邊形的計算轉化為解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

圓的半徑為R,它的內接正三角形的邊長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果圓的半徑為a,它的內接正方形邊長為b,該正方形的內切圓的內接正方形的邊長為c,則a,b,c間滿足的關系式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果圓的半徑為a,它的內接正方形邊長為b,該正方形的內切圓的內接正方形的邊長為c,則a,b,c間滿足的關系式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉了______圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉了______圈;
作業(yè)寶
(3)如圖3,⊙O1,和⊙O2內切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內切的位置關系.當⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉了______圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉了多少圈?請說明理由.作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河北省廊坊市中考數(shù)學一模試卷(解析版) 題型:解答題

圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉了______圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉了______圈;

(3)如圖3,⊙O1,和⊙O2內切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內切的位置關系.當⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉了______圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉了多少圈?請說明理由.

查看答案和解析>>

同步練習冊答案