【題目】如圖(1)是一個晾衣架的實物圖,支架的基本圖形是菱形,MN是晾衣架的一個滑槽,點P在滑槽MN上、下移動時,晾衣架可以伸縮,其示意圖如圖(2)所示,已知每個菱形的邊長均為20cm,且AB=CD=CP=DM=20cm.
(1)當點P向下滑至點N處時,測得∠DCE=60°時 ①求滑槽MN的長度;
②此時點A到直線DP的距離是多少?
(2)當點P向上滑至點M處時,點A在相對于(1)的情況下向左移動的距離是多少? (結(jié)果精確到0.01cm,參考數(shù)據(jù) ≈1.414, ≈1.732)

【答案】
(1)解:①當點P向下滑至點N處時,如圖1中,作CH⊥DN于H.

∵∠DCE=60°,

∴∠DCN=180°﹣∠DCE=120°,

∵CD=CP=20cm,即CD=CN=20cm,

∴∠CDN= (180°﹣∠DCN)=30°,

∴CH= CD=10cm,NH=DH= =10 (cm),

∴MN=DN﹣DM=2DH﹣DM=20 ﹣20≈14.6cm.

∴滑槽MN的長度為14.6cm.

②根據(jù)題意,點A到直線DP的距離是6CH=6×10=60cm


(2)解:當點P向上滑至點M處時,如圖2中,△CMD是等邊三角形,

∴∠CDM=60°,

作CG⊥DM于G,則CG=CDsin60°=20× =10 (cm),

此時點A到直線DP的距離是6CG=6×10 =60

∵60 ﹣60≈43.9cm,

∴點A在相對于(1)的情況下向左移動的距離是43.9cm


【解析】(1)①當點P向下滑至點N處時,如圖1中,作CH⊥DN于H.△CDN是等腰三角形,求出NH的長即可解決問題;②根據(jù)題意,點A到直線DP的距離是6CH=6×10=60cm.(2)當點P向上滑至點M處時,如圖2中,△CMD是等邊三角形,求出此時點A到直線DP的距離即可解決問題;
【考點精析】本題主要考查了菱形的性質(zhì)的相關知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=100°,ACB的平分線交AB邊于點E,在AC邊取點D,使∠CBD=20°,連接DE,則∠CED的大小=_____(度).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于每個非零自然數(shù)n,拋物線y=x2 x+ 與x軸交于An、Bn兩點,以AnBn表示這兩點間的距離,則A1B1+A2B2+…+A2017B2017的值是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABCRtADE,ABCADE=90°,BCDE相交于點F,連接CD,EB.

(1)圖中還有幾對全等三角形,請你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點A、B、C,它們對應的數(shù)分別為a、bc,且cb=ba;點C對應的數(shù)是10

1)若BC=15,求a、b的值;

2)如圖2,在(1)的條件下,O為原點,動點P、Q分別從AC同時出發(fā),點P向左運動,運動速度為2個單位長度/秒,點Q向右運動,運動速度為1個單位長度/秒,NOP的中點,MBQ的中點.

①用含t代數(shù)式表示PQ MN;

②在PQ的運動過程中,PQMN存在一個確定的等量關系,請指出他們之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數(shù)的點叫做整點.已知點

A04),點B軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當m=3時,點B的橫坐標的所有可能值是 ;當點B的橫坐標為4nn為正整數(shù))時,m= (用含n的代數(shù)式表示.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykxb的圖像經(jīng)過點(-2,4),且與正比例函數(shù)y=2x的圖像平行.

(1) 求一次函數(shù)ykxb的解析式;

(2) 求一次函數(shù)ykxb的圖像與坐標軸所圍成的三角形的面積;

(3) A(ay1),B(ab,y2)為一次函數(shù)ykxb的圖像上兩個點,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD⊥AO時,稱點P為“最佳視角點”,作PC⊥BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若∠AOC=120°時,“最佳視角點”P在直線PC上的位置會發(fā)生什么變化?此時PC的長是多少?請通過計算說明.(結(jié)果精確到0.1cm,可用科學計算器,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

同步練習冊答案