【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)作底角∠ABC的平分線BD,交AC于點D(用尺規(guī)作圖,不寫作法,但保留作圖痕跡,然后用墨水筆加墨);
(2)通過計算說明△ABD和△BDC都是等腰三角形.
【答案】
(1)解:如圖所示:
BD即為所求;
(2)解:∵∠A=36°,
∴∠ABC=∠C=(180°﹣36°)÷2=72°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=72°÷2=36°,
∴∠CDB=180°﹣36°﹣72°=72°,
∵∠A=∠ABD=36°,∠C=∠CDB=72°,
∴AD=DB,BD=BC,
∴△ABD和△BDC都是等腰三角形.
【解析】(1)首先以B為圓心,任意長為半徑畫弧,兩弧交AB、BC于M、N兩點;再分別以M、N為圓心,大于 MN長為半徑畫弧,兩弧交于一點O,畫射線BO交AC于D.(2)根據三角形內角和為180°計算出∠ABC,∠C,∠CDB,∠ABD,∠DBC的度數,再根據等角對等邊可證出結論.
科目:初中數學 來源: 題型:
【題目】Windows2000下有一個有趣的游戲“掃雷”,下圖是掃雷游戲的一部分:(說明:圖中數字2表示在以該數字為中心的8個方格中有2個地雷).小旗表示該方格已被探明有地雷,現在還剩下A、B、C三個方格未被探明,其它地方為安全區(qū)(包括有數字的方格)
(1)現在還剩下幾個地雷?
(2)A、B、C三個方格中有地雷的概率分別是多大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,直線y= x+6與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
(1)求A、C兩點的坐標和拋物線的函數關系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD , 求點P的坐標;
(3)如圖2,另有一條直線y=﹣x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB:BC=3:4,AC=5,點P從點A出發(fā),以每秒1個單位的速度,沿△ABC邊A→B→C→A的方向運動,運動時間為t秒.
(1)求AB與BC的長;
(2)在點P的運動過程中,是否存在這樣的點P,使△CDP為等腰三角形?若存在,求出t值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,點C、D在線段AB上,D是線段AB的中點,AC=AD ,CD=4 ,求線段AB的長.
(2)如圖,點O是直線AB上的一點,OD是∠AOC的平分線,OE是∠COB的平分線,若∠AOD=14°,求∠DOE、∠BOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運輸量來估算:若租兩輛車合運,10天可以完成任務;若單獨租用乙車完成任務則比單獨租用甲車完成任務多用15天.
(1)甲、乙兩車單獨完成任務分別需要多少天?
(2)已知兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500元.試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結論是( 。
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com