【題目】如圖,在一筆直的海岸線l上有A,B兩個(gè)觀測(cè)站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測(cè)得小船在北偏西600的方向,從B測(cè)得小船在北偏東450的方向.
(1)求點(diǎn)P到海岸線l的距離;
(2)小船從點(diǎn)P處沿射線AP的方向航行一段時(shí)間后,到達(dá)點(diǎn)C處.此時(shí),從B測(cè)得小船在北偏西150的方向.求點(diǎn)C與點(diǎn)B之間的距離.
(上述2小題的結(jié)果都保留根號(hào))
【答案】(1);(2)
【解析】
(1)過點(diǎn)P作PD⊥AB于點(diǎn)D,構(gòu)造直角三角形BDP和PDA,PD即為點(diǎn)P到海岸線l的距離,應(yīng)用銳角三角函數(shù)即可求解。
(2)過點(diǎn)B作BF⊥CA于點(diǎn)F,構(gòu)造直角三角形ABF和BFC,應(yīng)用銳角三角函數(shù)即可求解。
解:(1)如圖,過點(diǎn)P作PD⊥AB于點(diǎn)D,
設(shè)PD=x,
由題意可知 ,PBD=45°,∠PAD=30°,
∴在Rt△BDP中,BD=PD=x
在Rt△PDA中,AD=PD=
∵AB=2,∴
解得
∴點(diǎn)P到海岸線l的距離為
(2)如圖,過點(diǎn)B作BF⊥CA于點(diǎn)F,
在Rt△ABF中,,
在Rt△ABC中,∠C=180°-∠BAC-∠ABC=45°,
∴在Rt△BFC中,
∴點(diǎn)C與點(diǎn)B之間的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小亮為了測(cè)量校園里教學(xué)樓AB的高度,將測(cè)角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測(cè)角儀的高度為1.5m,測(cè)得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是( )
A.55.5mB.54mC.19.5mD.18m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G在直徑DF的延長線上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長交AB的延長線于點(diǎn)P,且∠D=2∠A,作CH⊥AB于點(diǎn)H.
(1)判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(2)若HB=2,cosD=,請(qǐng)求出AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接AC,點(diǎn)E為正方形ABCD內(nèi)一點(diǎn),∠BAE=∠BCE=15°,點(diǎn)F為AE延長線上一點(diǎn),且BF=BC,連接CF,下列結(jié)論:①EF平分∠BEC;②△BCF是等邊三角形;③∠AFC=45°;④EF=AE+BE.正確的是( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個(gè)實(shí)數(shù)根x1.x2.
(1)求實(shí) 數(shù)k的取值范圍;
(2)若(x1+1)(x2+1)=2,試求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點(diǎn).
()分別求這兩個(gè)函數(shù)的表達(dá)式.
()將直線向上平移個(gè)單位長度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,AD=4,M點(diǎn)是BC的中點(diǎn),A為圓心,AB為半徑的圓交AD于點(diǎn)E.點(diǎn)P在弧BE上運(yùn)動(dòng),則PM+DP的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對(duì)角線,將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG,則下列結(jié)論:①DE平分∠ADB;②BE=2-;③四邊形AEGF是菱形;④BC+FG=1.5.其中結(jié)論正確的序號(hào)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com