【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線,將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG,則下列結論:①DE平分∠ADB;②BE=2-;③四邊形AEGF是菱形;④BC+FG=1.5.其中結論正確的序號是_______.
【答案】①②③
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可知,△DGH≌△DCB,進而得知DH=DB,∠H=∠CBD=45°,∠DGH=∠DCB=90°,DG=DC=AD,之后可證△ADF≌△GDF,四邊形AEGF是菱形,再根據(jù)勾股定理可知AE的長度,進而可以一一判斷選出答案.
解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,△DGH≌△DCB,
∴DH=DB,∠H=∠CBD=45°,∠DGH=∠DCB=90°,DG=DC=AD,
在Rt△AED與Rt△GED中,AD=DG,ED=ED
∴Rt△AED≌Rt△GED(HL)
∴∠ADE=∠GDE,即DE平分∠ADB,故①正確;
在△ADF和△GDF中,AD=DG,∠ADF=∠GDF,DF=DF,
∴△ADF≌△GDF(SAS)
∴AF=GF,∠DAF=∠DGF=45°
又∵∠ABD=45°
∴FG∥AE
∵∠DAC=45°,
∴∠DAC=∠H,
∴AF∥EG
∴四邊形AEGF是平行四邊形,
又∵AF=GF
∴平行四邊形AEGF是菱形,故③正確;
∵∠H=45°,∠HAE=90°
∴AE=AH
∵AE=AF=HD-AD=BD-AD
∵正方形ABCD的邊長為1,根據(jù)勾股定理可知
即HD=
∴AE=
∴BE=,故②正確;
∵四邊形AEGF是菱形
∴FG=AE=
∴BC+FG=,故④錯誤;
綜上答案為①②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A,B兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西600的方向,從B測得小船在北偏東450的方向.
(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到達點C處.此時,從B測得小船在北偏西150的方向.求點C與點B之間的距離.
(上述2小題的結果都保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,地物線點:(、、均不為0)的頂點為,與軸的交點為,我們稱以為頂點,對稱軸是軸且過點的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.
(1)求拋物線的衍生拋物線和衍生直線的解析式;
(2)若一條拋物線的衍生拋物線和衍生直線分別是和,求這條拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,用籬笆靠墻圍成矩形花圍ABCD,墻可利用的最大長度為15米,一面利用舊墻,其余三面用籬笆圍成,籬笆總長為24米.
(1)若圍成的花圃面積為40米2時,求BC的長;
(2)如圖2若計劃在花圃中間用一道隔成兩個小矩形,且圍成的花圃面積為50米2,請你判斷能否成功圍成花圃,如果能,求BC的長?如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】運動員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時間t(s)滿足二次函數(shù)關系,t與h的幾組對應值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關系式(不要求寫t的取值范圍);
(2)求小球飛行3s時的高度;
(3)問:小球的飛行高度能否達到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O 為坐標原點,P是反比例函數(shù)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB.
(1)求證:P為線段AB的中點;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸相交于、兩點,與軸相交于點,若已知點的坐標為.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點,使的周長最小,求出點的坐標;
(3)在第一象限的拋物線上是否存在點,使的面積最大?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣2,0),B(4,0),與y軸交于點C.點D是拋物線上的一個動點,點D的橫坐標為m(1<m<4),連接AC,BC,DB,DC.
(1)求拋物線的解析式.
(2)當△BCD的面積等于△AOC的面積的時,求m的值.
(3)在拋物線的對稱軸上是否存在一點Q,使得△QAC的周長最小,若存在,求出點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com