【題目】如圖在平行四邊形ABCD,ABC=60°,AB=4,四條內(nèi)角平分線圍成四邊形EFGH面積為,則平行四邊形ABCD面積為________

【答案】

【解析】

先證明四邊形EFGH為矩形,再利用矩形的面積計算出EG的長,從而進一步計算平行四邊形ABCD的面積.

延長AFBC于點M,過點AANBC于點N,連接EG

∵四邊形ABCD是平行四邊形

ADBC

又∵∠ABC=60°

∴∠BAD=180°-60°=120°

又∵BH、AF分別平分∠ABC、∠BAD

∴∠ABH=,∠BAE=

∴∠HEF=AEB=

同理,∠H=HGF=90°

在四邊形EFGH中,∠H=HEF=HGF=90°

∴四邊形EFGH為矩形

在△ABM中,∠ABM=BAM=60°

∴△ABM為等邊三角形

又∵BE平分∠ABM,AB=4

同理可得,

∵四邊形EFGH為矩形

EMCG

EMCG

∴四邊形EMCG為平行四邊形

EGCM

∴∠HEG=HBC=30°

不妨設HG=a,EG=2a

則由勾股定理可得

∵四邊形EFGH面積為

CM=EG=2a=2

RtABN中,∠ABN=60°, ANB=90°,AB=4

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】瑞士的一位中學教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進AB兩種新型節(jié)能臺燈,已知B型節(jié)能臺燈每盞進價比A型的多40元,且用3000元購進的A型節(jié)能臺燈與用5000元購進的B型節(jié)能臺燈的數(shù)量相同.

1)求每盞A型節(jié)能臺燈的進價是多少元?

2)商場將購進A、B兩型節(jié)能臺燈100盞進行銷售,A型節(jié)能臺燈每盞的售價為90元,B型節(jié)能臺燈每盞的售價為140元,且B型節(jié)能臺燈的進貨數(shù)量不超過A型節(jié)能臺燈數(shù)量的2倍.應怎樣進貨才能使商場在銷售完這批臺燈時利最多?此時利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)前小明花1200元從市場購進批發(fā)價分別為每箱30元與50元的、兩種水果進行銷售,分別以每箱35元與60元的價格出售,設購進水果箱,水果.

1)求關于的函數(shù)表達式;

2)若要求購進水果的數(shù)量不少于水果的數(shù)量,則應該如何分配購進、水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小敏在測量學校一幢教學樓AB的高度時,她先在點C測得教學樓的頂部A的仰角為30°,然后向教學樓前進12米到達點D,又測得點A的仰角為45°.請你根據(jù)這些數(shù)據(jù),求出這幢教學樓AB的高度.

(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】開學初,李芳和王平去文具店購買學習用品,李芳用18元錢買了1支鋼筆和3本筆記本;王平用30元買了同樣的鋼筆2支和筆記本4本.

(1)求每支鋼筆和每本筆記本的價格;

(2)校運會后,班主任拿出200元學校獎勵基金交給班長,購買上述價格的鋼筆筆記本共36件作為獎品,獎給校運會中表現(xiàn)突出的同學,要求筆記本數(shù)不多于鋼筆數(shù)的2倍,共有多少種購買方案?請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過點A(4,m),ABx軸,且△AOB的面積為2.

(1)求km的值;

(2)若點C(x,y)也在反比例函數(shù)y的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新冠肺炎疫情期間,某小區(qū)計劃購買甲、乙兩種品牌的消毒劑,乙品牌消毒劑每瓶的價格比甲品牌消毒劑每瓶價格的3倍少50元,已知用300元購買甲品牌消毒劑的數(shù)量與用400元購買乙品牌消毒劑的數(shù)量相同.

1)求甲、乙兩種品牌消毒劑每瓶的價格各是多少元?

2)若該小區(qū)從超市一次性購買甲、乙兩種品牌的消毒劑共40瓶,且甲種數(shù)量不超過乙種的2倍,則如何購買總費用最低?最低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在長方形ABCD中,,,點PA開始沿邊AB向終點B的速度移動,與此同時,點Q從點B開始沿邊BC向終點C的速度移動,如果P,Q分別從A,B同時出發(fā),當點Q運動到點C時,兩點停止運動設運動時間為t秒.

填空:________,________用含t的代數(shù)式表示

t為何值時,PQ的長度等于5cm?

是否存在t的值,使得五邊形APQCD的面積等于?若存在,請求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案