如圖,已知矩形ABCD中,AB=10,AD=4,點E為CD邊上的一個動點,連結AE、BE,以AE為直徑作圓,交AB于點F,過點F作FH⊥BE于H,直線FH交⊙O于點G.
(1)求證:⊙O必經(jīng)過點D;
(2)若點E運動到CD的中點,試證明:此時FH為⊙O的切線;
(3)當點E運動到某處時,AE∥FH,求此時GF的長.

(1)證明:∵矩形ABCD中,∠ADC=90°,且O為AE中點,
∴OD=AE,
∴點D在⊙O上.
(2)證明:如圖,連結OF、EF.

易證AFED為矩形,
∴AF=DE.
∵E為CD的中點,
∴F為AB的中點.
∴OF為△ABE的中位線,
∴OF∥EB.
∵FH⊥EB,∴OF⊥FH.
∴FH為⊙O的切線.
(3)解:作OM⊥FG,連結OF.

∵AE∥FH,∴∠AEB=90°.
易證△ADE∽△ECB,
由相似得:DE=2或8.
①當DE=2時,
如圖,AF=2,F(xiàn)B=8,EB=4,AE=2
由△BFH∽△BAE得,HB=,∴OM=EH=
∴FG=2FM=
②當DE=8時,
如圖,同上解法,可得OG=AE=2

OM=EH=
∴FG=2GM=

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當x為何值時,△MAN為等腰直角三角形?
(2)當x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學在完成了以上聯(lián)系后,對該問題作了深入的研究,她認為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習冊答案