精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知ABO的弦,點CO上,且,聯結AO,CO,并延長CO交弦AB于點DAB4,CD6

1)求∠OAB的大;

2)若點EO上,BEAO,求BE的長.

【答案】130°;(24

【解析】

1)連接OB,證OD垂直平分AB,在RtAOD中通過解直角三角形可求出∠OAB的度數;

2)連接OE,證△OBE是等邊三角形,即可知BE的長度等于半徑.

解:(1)如圖1,連接OB

,

∴∠AOC=∠BOC,

180°﹣∠AOC180°﹣∠BOC,

∴∠AOD=∠BOD,

OAOB,

OD垂直平分AB,

ADBDAB2,

O的半徑為r,則OD6r,

RtAOD中,AO2AD2+OD2,

r2=(22+6r2

解得,r4,

cosOAD

∴∠OAD30°,

即∠OAB30°;

2)如圖2,連接OE,

由(1)知,∠OAB30°,

OBOA,

∴∠OBA=∠OAB30°,

EBAO,

∴∠EBD=∠OAB30°,

∴∠EBO=∠EBD+OBA60°,

OEOB,

∴△OEB是等邊三角形,

BEr4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一次函數ykx+b的圖象分別交x軸,y軸于A4.0),B0,2)兩點,與反比例函數y的圖象交于CD兩點,CEx軸于點ECE3

1)求反比例函數與一次函數的解析式;

2)根據圖象直接寫出:不等式0kx+b的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市為了答謝顧客發(fā)起活動:凡在本超市一次性購物滿100元的顧客,當天均可憑購物小票參與一次抽獎活動,獎品是三種瓶裝飲品:紅酒、啤酒和酸奶,抽獎規(guī)則如下:

如圖,是一個材質均勻可自出轉動的轉盤,轉盤被等分成五個扇形區(qū)域,各區(qū)域上分別寫有“紅”、“啤”、“酒”、“酸”、“奶”字樣;

參與一次獎活動的顧客可以進行兩次“隨機轉動”,但若轉盤停止時指針指向兩邊區(qū)域的邊界則可以重新轉動轉盤,直到指針停到有字的區(qū)域才算完成了這次隨機轉動;

顧客參與一次抽獎活動,記錄兩次指針所指區(qū)域對應的字,若這兩個字和某種獎品名稱對應的兩個字相同(與字的順序無關),便可獲得相應獎品一瓶;若兩字不能組成一種獎品名時,不能獲得任何獎品,根據以上規(guī)則,回答下列問題:

1)求只做一次“隨機轉動”指針指向“酒“字的概率;

2)請用列表或畫樹狀圖的方法求顧客參與一次抽獎活動獲得一瓶紅酒的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax25axca0)與x軸負半軸交于A、B兩點(點A在點B的左側),與y軸交于C點,D是拋物線的頂點,過DDHx軸于點H,延長DHAC于點E,且SABDSACB916,

1)求AB兩點的坐標;

2)若△DBH與△BEH相似,試求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在矩形中,已知,點邊上一點,滿足,動點的速度沿線段從點移動到點,連接,作,交線段于點,設點移動的時間為的長度為,的函數關系如圖②所示.

1)圖①中,_______,圖②中,_______;

2)點能否為線段的中點?若可能,求出此時的值,若不可能,請說明理由;

3)在圖①中,連接,設交于點,若平分的面積,求此時的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=90°,AB∥x軸,OB=2,雙曲線y=經過點B,將△AOB繞點B逆時針旋轉,使點O的對應點D落在x軸的正半軸上.若AB的對應線段CB恰好經過點O.

(1)求點B的坐標和雙曲線的解析式;

(2)判斷點C是否在雙曲線上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一平面直角坐標系中,反比例函數yb0)與二次函數yax2+bxa0)的圖象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為(  )

A.,0B.2,0C.,0D.3,0

查看答案和解析>>

同步練習冊答案