在平面直角坐標系xOy中,二次函數(shù)y1=mx2-(2m+3)x+m+3與x軸交于點A、點B(點A在點B的左側(cè)),與y軸交于點C(其中m>0).
(1)求:點A、點B的坐標(含m的式子表示);
(2)若OB=4•AO,點D是線段OC(不與點O、點C重合)上一動點,在線段OD的右側(cè)作正方形ODEF,連接CE、BE,設(shè)線段OD=t,△CEB的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

【答案】分析:(1)拋物線的解析式中,令y=0,通過解方程即可得到A、B點的坐標.
(2)根據(jù)(1)的結(jié)果能得到OA、OB的長,結(jié)合OB=4OA的條件能求出m的值.若設(shè)直線EF與線段BC的交點為G,那么以EG為底、OB為高能求出S與t的函數(shù)關(guān)系式,在表達EG長時,要注意t的取值范圍.
解答:解:(1)二次函數(shù)y1=mx2-(2m+3)x+m+3中,令y=0,得:
0=mx2-(2m+3)x+m+3,
解得:x1=1,x2=
∴A(1,0)、B(,0).

(2)由(1)知:OB=,OA=1,已知 OB=4•OA,得:
=4,解得:m=1;
在Rt△OBC中,OB=OC=4,所以∠OBC=45°;
①當(dāng)0<t<2時,如圖①;
由于四邊形ODEF是正方形,所以O(shè)F=EF=t,BF=OB-OF=4-t;
∴GF=BF=4-t,GE=GF-EF=4-t-t=4-2t;
∴S=GE•OB=8-4t;
②當(dāng)2<t<4時,如圖②;
同①可得:GE=2t-4;
S=GE•OB=4t-8;
綜上,得:
當(dāng)0<t<2時,S=8-4t;
當(dāng)2<t<4時,S=4t-8.
點評:題目主要考查的是二次函數(shù)以及圖形的面積問題;(2)題在解答時一定要注意自變量的取值范圍,圖形動點問題通常要找出關(guān)鍵“點”,然后再確定對應(yīng)的分段函數(shù),如此題,當(dāng)點E在線段BC上時,就是該題的一個關(guān)鍵“點”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案