【題目】如圖,在平面直角坐標(biāo)系中,長方形的邊分別在軸,軸上,點(diǎn)在邊上,將該長方形沿折疊,點(diǎn)恰好落在邊上的點(diǎn)處,若,,則所在直線的表達(dá)式為__________

【答案】

【解析】

設(shè)CE=a,根據(jù)勾股定理可以得到CEOF的長度,再根據(jù)點(diǎn)E在第二象限,從而可以得到點(diǎn)E的坐標(biāo).然后利用待定系數(shù)法求出AE所在直線的解析式.

解:設(shè)CE=a,則BE=8-a,

由折疊的性質(zhì)可得:EF=BE=8-a,AB=AF
∵∠ECF=90°,CF=4
a2+42=8-a2,
解得,a=3,
OE=3

設(shè)OF=b,則OC=AB=AF=4+b
∵∠ACF=90°,OA=8

b2+82=b+42

b=6,∴OF=6

OC=CF+OF=10,
∴點(diǎn)E的坐標(biāo)為(-103),

設(shè)AE所在直線的解析式為y=kx+bk≠0).

E-10,3),A0,8)代入y=kx+b

,解得

AE所在直線的解析式為:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題:用3型車和2型車載滿貨物一次可運(yùn)貨17噸;用2型車和3型車載滿貨物一次可運(yùn)貨18,某物流公司現(xiàn)有35噸貨物,計(jì)劃同時(shí)租用型車,型車,一次運(yùn)完,且恰好每輛車都載滿貨物.

11型車和1型車都載滿貨物一次可分別運(yùn)貨多少噸?

2)若型車每輛需租金200/,型車每輛需租金240/,請(qǐng)你幫該物流設(shè)計(jì)最省錢的租車方案,并求出最少租車費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,BC=8 AB=6cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng).若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過程中,△PBQ的最大面積是(  。

A. 18cm2 B. 12cm2 C. 9cm2 D. 3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則

這個(gè)二次函數(shù)的解析式是________;

當(dāng)________時(shí),

當(dāng)的取值范圍是________時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體的長為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校統(tǒng)籌安排大課間體育活動(dòng),在各班隨機(jī)選取了一部分學(xué)生,分成四類活動(dòng):跳繩、羽毛球、乒乓球其他進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如圖的兩幅統(tǒng)計(jì)圖.

1)學(xué)校采用的調(diào)查方式是      ;學(xué)校在各班隨機(jī)選取了      名學(xué)生;

2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):羽毛球    人、乒乓球     人、其他      %

3)該校共有900名學(xué)生,請(qǐng)估計(jì)喜歡跳繩的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,延長到點(diǎn),使,連結(jié),過點(diǎn),垂足為,交的延長線于點(diǎn)

求證:的切線;

猜想線段、之間的數(shù)量關(guān)系,并證明你的猜想;

,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題.

①(x2+3)(3x21

②(4x2y8x3y3)÷(﹣2x2y

③[(m+3)(m3)]2

102×100+105÷103

,其中x滿足x2x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC平分鈍角∠BAE交過B點(diǎn)的直線于點(diǎn)CBD平分∠ABCAC于點(diǎn)D,且∠BAD+ABD90°.

1)求證:AEBC;

2)點(diǎn)F是射線BC上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)B,C重合),連接AF,與射線BD相交于點(diǎn)P

(。┤鐖D1,若∠ABC45°,AFAB,試探究線段BFCF之間滿足的數(shù)量關(guān)系;

(ⅱ)如圖2,若AB10,SABC30,∠CAF=∠ABD,求線段BP的長.

查看答案和解析>>

同步練習(xí)冊答案