已知:y關(guān)于x的函數(shù)y=(k-1)x2-2kx+k+2的圖象與x軸有交點(diǎn).
(1)求k的取值范圍;
(2)若x1,x2是函數(shù)圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo),且滿足(k-1)x12+2kx2+k+2=4x1x2.
①求k的值;②當(dāng)k≤x≤k+2時(shí),請結(jié)合函數(shù)圖象確定y的最大值和最大值.
解:(1)當(dāng)k=1時(shí),函數(shù)為一次函數(shù)y=-2x+3,其圖象與x軸有一個(gè)交點(diǎn).
當(dāng)k≠1時(shí),函數(shù)為二次函數(shù),其圖象與x軸有一個(gè)或兩個(gè)交點(diǎn),
令y=0得(k-1)x2-2kx+k+2=0.
△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k=1.
綜上所述,k的取值范圍是k≤2.
(2)①∵x1≠x2,由(1)知k<2且k=1.
由題意得(k-1)x12+(k+2)=2kx1.
將(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:
2k(x1+x2)=4x1x2.
又∵x1+x2=,x1x2=,
∴2k·=4·.
解得:k1=-1,k2=2(不合題意,舍去).
∴所求k值為-1.
②如圖5,∵k1=-1,y=-2x2+2x+1=-2(x-)2+.
且-1≤x≤1.
由圖象知:當(dāng)x=-1時(shí),y最小=-3;當(dāng)x=時(shí),y最大=.
∴y的最大值為,最小值為-3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北荊門卷)數(shù)學(xué)(帶解析) 題型:解答題
已知:y關(guān)于x的函數(shù)y=(k﹣1)x2﹣2kx+k+2的圖象與x軸有交點(diǎn).
(1)求k的取值范圍;
(2)若x1,x2是函數(shù)圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo),且滿足(k﹣1)x12+2kx2+k+2=4x1x2.
①求k的值;②當(dāng)k≤x≤k+2時(shí),請結(jié)合函數(shù)圖象確定y的最大值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北荊門卷)數(shù)學(xué)(解析版) 題型:解答題
已知:y關(guān)于x的函數(shù)y=(k﹣1)x2﹣2kx+k+2的圖象與x軸有交點(diǎn).
(1)求k的取值范圍;
(2)若x1,x2是函數(shù)圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo),且滿足(k﹣1)x12+2kx2+k+2=4x1x2.
①求k的值;②當(dāng)k≤x≤k+2時(shí),請結(jié)合函數(shù)圖象確定y的最大值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:湖北省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙教版九年級(上)第一次月考數(shù)學(xué)試卷(七)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com