6、如圖,∠1=∠2,若△ABC≌△DCB,則添加的條件可以是
AC=DB或∠A=∠D或∠ABC=∠DCB,
分析:三角形全等條件中必須是三個(gè)元素,并且一定有一組對(duì)應(yīng)邊相等;由題意∠1=∠2,BC是公共邊,所以,添加AC=DB或∠A=∠D或∠ABC=∠DCB,即可證明△ABC≌△DCB;
解答:解:∵∠1=∠2,BC是公共邊,
∴添加AC=DB或∠A=∠D或∠ABC=∠DCB,即可證明△ABC≌△DCB.
故答案為:AC=DB或∠A=∠D或∠ABC=∠DCB.
點(diǎn)評(píng):本題主要考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、下列說法,正確的有( 。﹤(gè)
(1)平面直角坐標(biāo)系上的點(diǎn)與實(shí)數(shù)對(duì)一一對(duì)應(yīng);
(2)平分弦的直徑垂直于這條弦;
(3)當(dāng)b2-4ac>0時(shí),拋物線y=ax2+bx+c(a≠0)與坐標(biāo)軸一定有三個(gè)交點(diǎn);
(4)如圖,△ABC中,若BC=1,AB=2,則∠A=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請(qǐng)?zhí)骄浚?br />精英家教網(wǎng)
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長(zhǎng);
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點(diǎn),則AB1+AC1的長(zhǎng)是否不變?請(qǐng)說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點(diǎn),交AN于C2點(diǎn),則AC2的長(zhǎng)是多少?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),四邊形ABCD內(nèi)部有一點(diǎn)P,使得S△APD+S△BPC=S△PAB+S△PCD,那么這樣的點(diǎn)P叫做四邊形ABCD的等積點(diǎn).
(1)如果四邊形ABCD內(nèi)部所有的點(diǎn)都是等積點(diǎn),那么這樣的四邊形叫做等積四邊形.
①請(qǐng)寫出你知道的等積四邊形:
 
,
 
 
,
 
,(四例)
②如圖(2),若四邊形ABCD是平行四邊形且S△ABP=8,S△APD=7,S△BPC=15,則S△PCD=
 

(2)如圖(3),等腰梯形ABCD,AD=4,BC=10,AB=5,直線l為等腰梯形的對(duì)稱軸,分別交AD于點(diǎn)E,交BC于點(diǎn)F.
①請(qǐng)?jiān)谥本l上找到等腰梯形的等積點(diǎn),并求出PE的長(zhǎng)度.
②請(qǐng)找出等腰梯形ABCD內(nèi)部所有的等積點(diǎn),并畫圖表示.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將矩形ABCD沿AE折疊,得到如圖所示圖形.若∠CED′=56°,則∠AED的大小是
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,AB∥CD,若∠ABE=130°,∠CDE=152°,則∠BED=
78°
78°

查看答案和解析>>

同步練習(xí)冊(cè)答案