【題目】今年新冠肺炎疫情發(fā)生以后,各級財政部門按照黨中央國務院的決策部署,迅速反 應、及時應對.2月14日下午,國務院聯防聯控機制就加大疫情防控財稅金融支持 力度召開新聞發(fā)布會.會上,財政部應對疫情工作領導小組辦公室主任、社會保障 司司長符金陵透露,財政部建立了全國財政系統(tǒng)疫情防控經費的日報制度,實時跟蹤各地方經費保障情況,截至2月13日各級財政共計支出了805.5億元保障資金,其中805.5億元用科學記數法表示正確的是( )
A.元B.元
C.元D.元
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求a,k的值及點B的坐標;
(2)若點P在x軸上,且S△ACP=S△BOC,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=10cm,E為對角線BD上一動點,連接AE,CE,過E點作EF⊥AE,交直線BC于點F.E點從B點出發(fā),沿著BD方向以每秒2cm的速度運動,當點E與點D重合時,運動停止.設△BEF的面積為ycm2,E點的運動時間為x秒.
(1)求證:CE=EF;
(2)求y與x之間關系的函數表達式,并寫出自變量x的取值范圍;
(3)求△BEF面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,于點,,為了研究圖中線段之間的關系,設,,
(1)可通過證明,得到關于的函數表達式__________,其中自變量的取值范圍是___________;
(2)根據圖中給出的(1)中函數圖象上的點,畫出該函數的圖象;
(3)借助函數圖象,回答下列問題:①的最小值是__________;②已知當時,的形狀與大小唯一確定,借助函數圖象給出的一個估計值(精確到0.1)或者借助計算給出的精確值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鐘南山院士在談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內注意通風,勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進行統(tǒng)計、分析,過程如下:
收集數據
甲小區(qū):80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100
乙小區(qū):60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100
整理數據
成績(分) 小區(qū) | ||||
甲小區(qū) | ||||
乙小區(qū) |
分析數據
數據名稱 計量小區(qū) | 平均數 | 中位數 | 眾數 |
甲小區(qū) | |||
乙小區(qū) |
應用數據
(1)填空:=______,=______;
(2)若乙小區(qū)共有1200人參與答卷,請估計乙小區(qū)成績大于90分的人數;
(3)社區(qū)管理人員看完統(tǒng)計數據,認為甲小區(qū)對新型冠狀病毒肺炎防護知識掌握更好,請你寫出社區(qū)管理人員的理由;為了更好地宣傳新型冠狀病毒肺炎防護知識,社區(qū)管理人員決定從甲、乙小區(qū)的4個滿分試卷中隨機抽取兩份試卷對小區(qū)居民進行網絡宣傳講解培訓,請用列表格或畫樹狀圖的方法求出甲、乙小區(qū)各抽到一份滿分試卷的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為美化小區(qū)環(huán)境,物業(yè)計劃安排甲、乙兩個工程隊完成小區(qū)綠化工作.已知甲工程隊每天綠化面積是乙工程隊每天綠化面積的2倍,甲工程隊單獨完成600m2的綠化面積比乙工程隊單獨完成600m2的綠化面積少用2天.
(1)求甲、乙兩工程隊每天綠化的面積分別是多少m2;
(2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊每天綠化費為0.3萬元,付給乙工程隊每天綠化費為 0.2萬元,若要使這次的綠化總費用不超過10萬元,則至少應安排甲工程隊工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人同時登山,甲乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山的速度是 米/分鐘,乙在A地提速時距地面的高度b為 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,請求出乙提速后y和x之間的函數關系式.
(3)登山多長時間時,乙追上了甲,此時乙距A地的高度為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com