先化簡,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若三角形AMB為等腰直角三角形,我們把拋物線上A、B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高。
(1) 拋物線對應(yīng)的碟寬為________;拋物線對應(yīng)的碟寬為______;拋物線(a>0)對應(yīng)的碟寬為________;拋物線對應(yīng)的碟寬_____;
(2) 若拋物線對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3) 將拋物線的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3,…),定義F1,F(xiàn)2,…..Fn為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比。若Fn與Fn-1的相似比為,且Fn的碟頂是Fn-1的碟寬的中點(diǎn),現(xiàn)在將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
① 求拋物線y2的表達(dá)式
② 若F1的碟高為h1,F2的碟高為h2,…Fn的碟高為hn,則hn=_______,Fn的碟寬右端點(diǎn)橫坐標(biāo)為_______;F1,F(xiàn)2,…..Fn的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出改直線的表達(dá)式;若不是,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在□ABCD中,以點(diǎn)A為圓心,AB的長為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,延長BA與⊙A相交于點(diǎn)F.若的長為,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
近年來,A市民用汽車擁有量持續(xù)增長,2009年至2013年該市民用汽車擁有量(單位:萬輛)依次為11,13,15,19,x.若這五個數(shù)的平均數(shù)為16,則x=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一艘海輪在A點(diǎn)時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達(dá)B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結(jié)果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)閱讀合作學(xué)習(xí)內(nèi)容,請解答其中的問題;
(2)小亮進(jìn)一步研究四邊形AEGF的特征后提出問題:“當(dāng)AE>EG時,矩形AEGF與矩形DOHE能否全等?能否相似?”
針對小亮提出的問題,請你判斷這兩個矩形能否全等?直接寫出結(jié)論即可;這兩個矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD邊長為12,E為CD上一點(diǎn),沿AE將△ADE折疊得△AEF,延長EF交BC于G,連接AG、CF,BG=6,下列說法正確的有( 。
①△ABG≌△AFG;②DE=4;③AG∥CF;④.
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com