【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.
【答案】解:(1)點E是四邊形ABCD的邊AB上的相似點。理由如下:
∵∠A=55°,∴∠ADE+∠DEA=125°。
∵∠DEC=55°,∴∠BEC+∠DEA=125°。
∴∠ADE=∠BEC。
∵∠A=∠B,∴△ADE∽△BEC。
∴點E是四邊形ABCD的AB邊上的相似點。
(2)作圖如下:
(3)∵點E是四邊形ABCM的邊AB上的一個強相似點,
∴△AEM∽△BCE∽△ECM。∴∠BCE=∠ECM=∠AEM。
由折疊可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD。
∴∠BCE=∠BCD=30°。∴BE=CE=AB。
在Rt△BCE中,,
∴,∴。
【解析】
試題(1)要證明點E是四邊形ABCD的AB邊上的相似點,只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解。
(2)根據(jù)兩個直角三角形相似得到強相似點的兩種情況即可。
(3)因為點E是梯形ABCD的AB邊上的一個強相似點,所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對應(yīng)線段成比例,可以判斷出AE和BE的數(shù)量關(guān)系,從而可求出解。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn)
如圖1,在邊長為1的正方形網(wǎng)格中,連接格點、和、,與相交于點,求的值.
方法歸納
求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形.觀察發(fā)現(xiàn)問題中不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題.比如連接格點、,可得,則,連接,那么就變換到中.
問題解決
(1)直接寫出圖1中的值為_________;
(2)如圖2,在邊長為1的正方形網(wǎng)格中,與相交于點,求的值;
思維拓展
(3)如圖3,,,點在上,且,延長到,使,連接交的延長線于點,用上述方法構(gòu)造網(wǎng)格求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海洋服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價300元,領(lǐng)帶每條定價40元廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:買一套西裝送一條領(lǐng)帶;西裝和領(lǐng)帶定價打9折付款.現(xiàn)有某客戶要到該服裝廠購買西裝50套,領(lǐng)帶x條.
(1)若該客戶分別按兩種優(yōu)惠方案購買,需付款各多少元用含x的式子表示.
(2)若該客戶購買西裝50套,領(lǐng)帶60條,請通過計算說明按哪種方案購買較為合算.
(3)請通過計算說明什么情況下客戶分別選擇方案購買較為合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,A(-3,0)、B(0,4)、P(4,0),AB=5,M、N兩點分別在線段 AB、y軸上,則 PN+MN的最小值為( )
A.4B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格中的每個小方格都是邊長為1的正方形,我們把以格點間的連線為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形.在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,畫出△A1B1C1的圖形并寫出點B1的坐標(biāo);
(2)把△ABC繞點C按順時針旋轉(zhuǎn)90°后得△A2B2C2,畫出△A2B2C2的圖形并寫出B2的坐標(biāo);
(3)把△ABC以點A為位似中心放大,使放大前后對應(yīng)邊的比為1∶2,畫出△AB3C3的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進行如下設(shè)計:
說明:方案一圖形中的圓過點A,B,C,圓心O也是正方形的頂點;
回答問題(直接寫出結(jié)果):
(1)方案二中,直角三角形紙片的兩條直角邊長分別為_______cm和_______cm;
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率是________(填準(zhǔn)確值),近似值約為38.2%.相比之下,方案二的利用率是________%.小明感覺上面兩個方案的利用率均偏低,又進行了新的設(shè)計(方案三),請直接寫出方案三的利用率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線:與拋物線關(guān)于y軸對稱, 拋物線與x軸分別交于點A(-3, 0), B(m, 0), 頂點為M.
(1)求b和m的值;
(2)求拋物線的解析式;
(3)在x軸, y軸上分別有點P(t, 0), Q(0, -2t), 其中t>0, 當(dāng)線段PQ與拋物線有且只有一個公共點時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點表示的數(shù)為,點表示的數(shù)為,點到點、點的距離相等,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為(大于秒.
(1)點表示的數(shù)是______.
(2)求當(dāng)等于多少秒時,點到達點處?
(3)點表示的數(shù)是______(用含字母的式子表示)
(4)求當(dāng)等于多少秒時,、之間的距離為個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)市場新進一批水果,有蘋果、西瓜、桃子和香蕉四個品種,統(tǒng)計后將結(jié)果繪制成條形圖(如圖),已知西瓜的重量占這批水果總重量的40%.
回答下列問題:
(1)這批水果總重量為 kg;
(2)請將條形圖補充完整;
(3)若用扇形圖表示統(tǒng)計結(jié)果,則桃子所對應(yīng)扇形的圓心角為 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com