已知矩形的面積為a(a 為常數(shù),a>0),當(dāng)該矩形的長為多少時. 它的周長最小?最小值是多少?   
數(shù)學(xué)模型    
設(shè)該矩形的長為x·周長為 y·則 y與x 的函數(shù)關(guān)系式為y=2(x>0).
探索研究
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=(x>0)的圖象性質(zhì).
①填寫下表. 畫出函數(shù)的圖象:   
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);    
③在求二次函數(shù) y= ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象.還可以通過配方得到. 請你通過配方求函數(shù)的最小值.    
解決問題    
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

 

解:(1)①函數(shù) y=(x>0)的圖象如圖.
②本題答案不唯一.下列解法供參考.
當(dāng)0<x<1 時,y隨x 增大而減。
當(dāng) x>1時,y隨x增大而增大;
當(dāng) x=1. 時函數(shù) y= (x>0)的最小值為2
.③y =當(dāng)=0,
即 x=1時,函數(shù) y=(x>0)的最小值為2.
(2)當(dāng)該矩形的長為時,它的周長最小,最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知矩形的面積為8,那么它的長y與寬x之間的關(guān)系用圖象大致可表示為( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+
a
x
)(x>0)

探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+
1
x
(x>0)
的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
當(dāng)
x
-
1
x
=0,即x=1時,函數(shù)y=x+
1
x
(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知矩形的面積為10,則它的長與寬之間的函數(shù)關(guān)系用圖象大致可表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•營口一模)[提出問題]:已知矩形的面積為1,當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
[建立數(shù)學(xué)模型]:設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=x+
1
x
(x>0).
[探索研究]:我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+(x>0)的圖象和性質(zhì).
①填寫下表,畫出函數(shù)的圖象;
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出當(dāng)自變量x取何值時,函數(shù)y=x+
1
x
(x>0)有最小值;
③我們在課堂上求二次函數(shù)最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知矩形的面積為6,則這個矩形的長為y與寬x的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

同步練習(xí)冊答案