【題目】如圖,有一塊鐵片下腳料,其外輪廓中的曲線是拋物線的一部分,要裁出一個等邊三角形,使其一個頂點與拋物線的頂點重合,另外兩個頂點在拋物線上,求這個等邊三角形的邊長(結果精確到,).
【答案】5.2dm.
【解析】
以拋物線的頂點O為坐標原點,過點O作直線AB的平行線和垂線分別作為x軸和y軸,建立平面直角坐標系,設拋物線解析式為y=ax2(a≠0),利用已知數據求出a的值,再利用等邊三角形的性質計算即可.
解:以拋物線的頂點O為坐標原點,過點O作直線AB的平行線和垂線分別作為x軸和y軸,建立平面直角坐標系.
則D(3,-6)
設拋物線解析式為y=ax2(a≠0),
∵D(3,-6)在拋物線上代入得:a=,
∴y=x2,
∵△ABO是等邊三角形,
∴OH=BH,
設B(x,x),
∴x=x2,
∴x1=0(舍),x2=,
∴BH=,AB=3≈5.2(dm),
答:等邊三角形的邊長為5.2dm
科目:初中數學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c的圖象與x軸交于A(2,0),B(﹣8,0)兩點,與y軸交于點C(0,﹣8).
(1)求拋物線的解析式;
(2)點F是直線BC下方拋物線上的一點,當△BCF的面積最大時,求出點F的坐標;
(3)在(2)的條件下,是否存在這樣的點Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點Q的坐標;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是正方形ABCD申CD邊上任意一點.
(1)以點A為中心,把△ADE順時針旋轉90°,畫出旋轉后的圖形;
(2)在BC邊上畫一點F,使△CFE的周長等于正方形ABCD的周長的一半,請簡要說明你取該點的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:把一個半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.
如圖,拋物線y=x2﹣2x﹣3與x軸交于點A,B,與y軸交于點D,以AB為直徑,在x軸上方作半圓交y軸于點C,半圓的圓心記為M,此時這個半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.
(1)直接寫出點A,B,C的坐標及“蛋圓”弦CD的長;
A ,B ,C ,CD= ;
(2)如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.
①求經過點C的“蛋圓”切線的解析式;
②求經過點D的“蛋圓”切線的解析式;
(3)由(2)求得過點D的“蛋圓”切線與x軸交點記為E,點F是“蛋圓”上一動點,試問是否存在S△CDE=S△CDF,若存在請求出點F的坐標;若不存在,請說明理由;
(4)點P是“蛋圓”外一點,且滿足∠BPC=60°,當BP最大時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,點為邊上的一個動點(點不與點、點重合).以為頂點作,射線交邊于點,過點作交射線于點.
(1)求證:;
(2)當平分時,求的長;
(3)當是等腰三角形時,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車專賣店經銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經銷一段時間后發(fā)現:當該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.
(1)當售價為萬元/輛時,平均每周的銷售利潤為___________萬元;
(2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com