【題目】一個(gè)不透明袋子中有1個(gè)紅球和n個(gè)白球,這些球除顏色外無其他差別.

1)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回.大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,求n的值.

2)在(1)的條件下,從袋中隨機(jī)摸出兩個(gè)球,求兩個(gè)球顏色不同的概率.

【答案】(1)3;(2)圖形見解析,.

【解析】

1)利用頻率估計(jì)概率,則摸到紅球的概率為0.25,根據(jù)概率公式得到=0.25,然后解方程即可;
2)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出的球顏色不同的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)利用頻率估計(jì)概率得到摸到紅球的概率為0.25

=0.25,

解得n=3

2)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中兩次摸出的球的顏色不同的結(jié)果共有6種,

所以兩次摸出的球顏色不同的概率==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建全國文明城市,鄂州市積極主動(dòng)建設(shè)美麗家園,某社區(qū)擬將一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草面積為xm2),種草費(fèi)用y1(元)與xm2)的函數(shù)關(guān)系式為y1=,其圖象如圖所示:栽花所需費(fèi)用y2(元)與xm2)的函數(shù)關(guān)系如表所示:

xm2

100

200

300

y2(元)

3900

7600

11100

1)請(qǐng)直接寫出y1與種草面積xm2)的函數(shù)關(guān)系式,y2與栽花面積xm2)的函數(shù)關(guān)系式;

2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與種草面積xm2)的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;

3)若種草部分的面積不少于600m2,栽花部分的面積不少于200m2,請(qǐng)求出綠化總費(fèi)用W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BECE,且∠ABE=BCE,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的最小值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 蠟燭在真空中燃燒是一個(gè)隨機(jī)事件

B. 在射擊比賽中,運(yùn)動(dòng)員射中靶心和沒有射中靶心的可能性相同

C. 某抽獎(jiǎng)游戲的中獎(jiǎng)率為,說明只有抽獎(jiǎng)100次,才能中獎(jiǎng)1

D. 天氣預(yù)報(bào)明天降水概率為,表示明天下雨的可能性較大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,半徑BOAC相交于點(diǎn)DBO的延長線與⊙O交于點(diǎn)F,與過點(diǎn)C的切線NC交于點(diǎn)M,過點(diǎn)DDEBC,垂足為E,連接CF,已知MF=FC

1)求證:∠M=30°

2)①若=,求的值;

②當(dāng)DEC的面積是它最大值的時(shí),求的值.

3)若DE=AB,試判斷點(diǎn)D所在的位置.(請(qǐng)直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖(要求:以下操作均只使用無刻度的直尺)

1)在直角坐標(biāo)系中我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).如圖1中點(diǎn)A12)、B34),在圖1中第一象限內(nèi)找出所有的整點(diǎn)P(圖上標(biāo)為P1P2),使得點(diǎn)P橫、縱坐標(biāo)的平方和等于20

2)如圖2,是大小相等的邊長為1的正方形構(gòu)成的網(wǎng)格,AB、CD均為格點(diǎn).請(qǐng)?jiān)诰段AD上找一點(diǎn)P,并連結(jié)BP使得直線BP將四邊形ABCD的面積分為12兩部分,在圖中畫出線段BP,并簡要說明你的畫圖方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx-3的圖象與x軸交于點(diǎn)A-1,0)和點(diǎn)B30),頂點(diǎn)為D,點(diǎn)C是直線ly=x+5x軸的交點(diǎn).

1)求該二次函數(shù)的表達(dá)式;

2)點(diǎn)E是直線l在第三象限上的點(diǎn),連接EA、EB,當(dāng)△ECA∽△BCE時(shí),求E點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接ADBD,在直線DE上是否存在點(diǎn)P,使得∠APD=ADB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系在代數(shù)和幾何之間架起了一座橋梁,實(shí)現(xiàn)了幾何方法與代數(shù)方法的結(jié)合,使數(shù)與形統(tǒng)一了起來,在平面直角坐標(biāo)系中,已知點(diǎn)Ax1,y1)、Bx2,y2),則A、B兩點(diǎn)之間的距離可以表示為AB,例如A2,1)、B(﹣1,2),則A、B兩點(diǎn)之間的距離AB;反之,代數(shù)式也可以看作平面直角坐標(biāo)系中的點(diǎn)C51)與點(diǎn)D1,﹣2)之間的距離.

1)已知點(diǎn)M(﹣76),N10),則M、N兩點(diǎn)間的距離為   ;

2)求代數(shù)式 的最小值;

3)求代數(shù)式|| 取最大值時(shí),x的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案