【題目】為了創(chuàng)建“全國文明城市”,鄂州市積極主動(dòng)建設(shè)美麗家園,某社區(qū)擬將一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草面積為x(m2),種草費(fèi)用y1(元)與x(m2)的函數(shù)關(guān)系式為y1=,其圖象如圖所示:栽花所需費(fèi)用y2(元)與x(m2)的函數(shù)關(guān)系如表所示:
x(m2) | 100 | 200 | 300 |
y2(元) | 3900 | 7600 | 11100 |
(1)請(qǐng)直接寫出y1與種草面積x(m2)的函數(shù)關(guān)系式,y2與栽花面積x(m2)的函數(shù)關(guān)系式;
(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與種草面積x(m2)的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;
(3)若種草部分的面積不少于600m2,栽花部分的面積不少于200m2,請(qǐng)求出綠化總費(fèi)用W的最小值.
【答案】(1)y1=,y2=-0.01x2+40x;(2)32500元;(3)x=800時(shí),w有最小值29600元.
【解析】
(1)函數(shù)y1是一次函數(shù),函數(shù)y2是二次函數(shù),利用待定系數(shù)法即可解決問題;
(2)分兩種情形構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;
(3)求出自變量x的取值范圍,利用二次函數(shù)的性質(zhì)即可解決問題;
解:(1)y1=,y2=-0.01x2+40x;
(2)當(dāng)0≤x<600時(shí),W=y1+y2=30x+[-0.01(1000-x)2+40(1000-x)]
=-0.01x2+10x+30000
=-0.01(x-500)2+32500
∵-0.01<0,
∴x=500時(shí),w有最大值32500.
當(dāng)600≤x≤1000時(shí),w=y1+y2=20x+6000+[-0.01(1000-x)2+40(1000-x)]
=-0.01x2+36000,
∵-0.01<0,
∴當(dāng)600≤x≤1000時(shí),w隨x的增大而減小,
∴當(dāng)x=600時(shí),w有最大值32400,
綜上所述,綠化總費(fèi)用W的最大值為32500元.
(3)由題意:,解得600≤x≤800,
∵600≤x≤800時(shí),w=-0.01x2+36000,w隨x的增大而減小,
∴x=800時(shí),w有最小值29600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,連結(jié)EB,交OD于點(diǎn)F.
(1)求證:OD⊥BE.
(2)若DE=,AB=6,求AE的長.
(3)若△CDE的面積是△OBF面積的,求線段BC與AC長度之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE∥AB交CA延長線于點(diǎn)E,連接AD,BD.
(1)△ABD的面積是________:
(2)求證:DE是⊙O的切線:
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖方式擺放,其中,,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.
求證:;
若將圖中的繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角a,且,其他條件不變,如圖請(qǐng)你直接寫出與DE的大小關(guān)系:______填“”或“”或“”
若將圖中的繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角,且,其他條件不變,如圖請(qǐng)你寫出此時(shí)AF、EF與DE之間的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD沿其對(duì)角線AC折疊,使△ABC落在AEC處,CE與AD交于點(diǎn)F,連接DE.
(1)請(qǐng)你判斷AC,DE的位置關(guān)系,并說明理由;
(2)若折疊后,CE平分AD,AB=4,BC=6,請(qǐng)利用(1)中的結(jié)論,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,射線AP交⊙O于C點(diǎn),∠PCO的平分線交⊙O于D點(diǎn),過點(diǎn)D作交AP于E點(diǎn).
(1)求證:DE為⊙O的切線;
(2)若DE=3,AC=8,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形中,米,米,為中點(diǎn),動(dòng)點(diǎn)以2米/秒的速度從出發(fā),沿著的邊,按照AEDA順序環(huán)行一周,設(shè)從出發(fā)經(jīng)過秒后,的面積為(平方米),求與間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明袋子中有1個(gè)紅球和n個(gè)白球,這些球除顏色外無其他差別.
(1)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回.大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,求n的值.
(2)在(1)的條件下,從袋中隨機(jī)摸出兩個(gè)球,求兩個(gè)球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長線與AC的延長線的交點(diǎn).
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;
(3)若AB=3,AE=,求BD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com