【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)請把折線統(tǒng)計圖補充完整;

(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應的圓心角的度數(shù);

(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.

【答案】(1)該班全部人數(shù)48人,社區(qū)服務的人數(shù)為24人補全折線統(tǒng)計如圖所示見解析;(2)網(wǎng)絡(luò)文明部分對應的圓心角的度數(shù)為45°;(3)他們參加同一服務活動的概率為

【解析】

(1)根據(jù)參加生態(tài)環(huán)保的人數(shù)以及百分比求得總?cè)藬?shù),用總?cè)藬?shù)乘以社區(qū)服務百分比求得其人數(shù),即可解決問題;
(2)根據(jù)圓心角=360°×百分比,計算即可;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他們參加同一服務活動的情況,再利用概率公式求解即可求得答案.

(1)該班全部人數(shù):12÷25%=48人.

社區(qū)服務的人數(shù)為48×50%=24,

補全折線統(tǒng)計如圖所示:

(2)網(wǎng)絡(luò)文明部分對應的圓心角的度數(shù)為360°×=45°;

(3)分別用A,B,C,D表示“社區(qū)服務、助老助殘、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個服務活動,

畫樹狀圖得:

共有16種等可能的結(jié)果,他們參加同一服務活動的有4種情況,

他們參加同一服務活動的概率為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設(shè)有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:

1)這次知識競賽共有多少名學生?

2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;

3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并回答問題:

材料1:如果一個三角形的三邊長分別為a,b,c,記,那么三角形的面積為

古希臘幾何學家海倫(Heron,約公元50年),在數(shù)學史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.

我國南宋數(shù)學家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對公式②進行變形:

這說明海倫公式與秦九韶公式實質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點分別是D、E、F.

(1)求△ABC的面積;

(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形ABCDE的邊長為2,分別以點C、D為圓心,CD長為半徑畫弧,兩弧交于點F,則的長為_____

【答案】

【解析】

試題解析:連接CF,DF,

CFD是等邊三角形,

∴∠FCD=60°,

∵在正五邊形ABCDE中,∠BCD=108°,

∴∠BCF=48°,

的長=,

故答案為:

型】填空
結(jié)束】
14

【題目】如圖,矩形紙片ABCD中,已知AD=8AB=6,EBC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當ΔEFC為直角三角形時,BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義符號的含義為:當時,;當時,如:,=的最大值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要________個小立方塊.最終搭成的長方體的表面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊ADCD上的點,AEED,DFDC14,連接EF并延長交BC的延長線于點G

1)求證:△ABE∽△DEF;

2)若正方形的邊長為10,求BG的長.

查看答案和解析>>

同步練習冊答案