【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)長方體,至少還需要________個(gè)小立方塊.最終搭成的長方體的表面積是________

【答案】26 66

【解析】

首先根據(jù)該幾何體的三視圖確定需要的小立方塊的塊數(shù)分布情況,然后確定搭成一個(gè)大長方體需要的塊數(shù),繼而得出其表面積.

由俯視圖易得最底層有7個(gè)小立方體,第二層有2個(gè)小立方體,第三層有1個(gè)小立方體,其小正方塊分布情況如下:

那么共有7+2+1=10個(gè)幾何體組成.

若搭成一個(gè)大長方體,共需3×4×3=36個(gè)小立方體,

所以還需36-10=26個(gè)小立方體,

最終搭成的長方體的表面積是3×4×2+3×3×2+3×4×2=66,

故答案為:26,66.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了節(jié)約開支,購買了質(zhì)量相同的兩種顏色的殘缺地磚,準(zhǔn)備用來裝修地面,現(xiàn)已加工成如圖1所示的等腰直角三角形,王聰同學(xué)設(shè)計(jì)了如圖2所示的四種圖案.

(1)你喜歡哪種圖案?并簡述該圖案的形成過程.

(2)請你利用所學(xué)過的知識(shí)再設(shè)計(jì)一幅與上述不同的圖案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩座城市相距100千米,現(xiàn)計(jì)劃要在兩座城市之間修筑一條高等級(jí)公路(即線段AB)。經(jīng)測量,森林保護(hù)區(qū)中心P點(diǎn)在A城市的北偏東30°方向,B城市的北偏西45°方向上。已知森林保護(hù)區(qū)的范圍在以P為圓心,50千米為半徑的圓形區(qū)域內(nèi),請問:計(jì)劃修筑的這條高等級(jí)公路會(huì)不會(huì)穿越保護(hù)區(qū)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)使用計(jì)算器求10個(gè)數(shù)據(jù)的平均值時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)20輸入為10,結(jié)果得到平均數(shù)14,那么由此算出的方差與實(shí)際方差的差為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

甲、乙兩同學(xué)用一副撲克牌中牌面數(shù)字分別是3、4、5、6的4張牌做抽數(shù)學(xué)游戲.游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機(jī)抽取一張,抽得的數(shù)作為十位上的數(shù)字,然后,將所抽的牌放回,正面全部朝下、洗勻,再從中隨機(jī)抽取一張,抽得的數(shù)作為個(gè)位上的數(shù)字,這樣就得到一個(gè)兩位數(shù).若這個(gè)兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認(rèn)為這個(gè)游戲公平嗎?請運(yùn)用概率知識(shí)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1)請畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;

(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2

(3)直接寫出A2,B2,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論,其中正確的結(jié)論是( )

A. abc>0 B. b>a+c C. 2a+b>0 D. b2﹣4ac<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過⊙O外一點(diǎn)P作⊙O的兩條切線PC,PD,切點(diǎn)分別為C,D,連接OP,CD.

(1)求證:OP⊥CD;

(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.

查看答案和解析>>

同步練習(xí)冊答案