【題目】如圖,拋物線的頂點為,一直線經(jīng)過拋物線上的兩點

1)求拋物線的解析式和的值.

2)在拋物線上兩點之間的部分(不包含兩點)是否存在點,使得面積最大?若存在,求出點的坐標;若不存在,請說明理由.

3)若點在拋物線上,點軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.

【答案】1,2)存在,,理由見解析(3

【解析】

1)根據(jù)頂點設拋物線為:,利用待定系數(shù)法求解拋物線即可;

2)先求解的解析式,過點軸的平行線交于點,設點,寫出的坐標,建立面積與的函數(shù)關系式,利用二次函數(shù)的性質得到答案.

3)分是平行四邊形的一條邊、是平行四邊形的對角線兩種情況,分別求解即可.

解:(1 拋物線的頂點為,

設二次函數(shù)表達式為:

將點的坐標代入上式:

解得:

故拋物線的表達式為:

代入上式,得

2)存在,理由:設表達式

代入

,

解得:

直線為:

二次函數(shù)對稱軸為:,

過點軸的平行線交于點

設點,點

時,有最大值,這時點;

3)設點、點,

①當是平行四邊形的一條邊時,

向左平移4個單位向下平移16個單位得到,

同理,點向左平移4個單位向下平移16個單位為,即為點,

即:,而,

解得:

故點;

②當是平行四邊形的對角線時,

由中點公式得:,而

解得:

故點;

綜上,點

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M,N是以AB為直徑的O上的點,且,弦MNAB于點C,BM平分ABD,MFBD于點F

1)求證:MFO的切線;

2)若CN3,BN4,求CM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點,若DE平分△ABC的周長,則DE的長是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】凈揚水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

1)請求出y(萬件)與x(元/件)之間的函數(shù)關系式;

2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關系式,并求出第一年年利潤的最大值;

3)假設公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,,點分別是邊的中點,上一點,以為一直角邊作等腰直角,且,若,則_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交BA、BC于點M、N;再以點N為圓心,MN長為半徑作弧交前面的弧于點F,作射線BFAC的延長線于點E

②以點B為圓心,BA長為半徑作弧交BE于點D,連接CD

請你觀察圖形,解答下列問題:

1)求證:△ABC≌△DBC;

2)若∠A=100°,∠E=50°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BACBC于點D,DE⊥AB,垂足為E。若DE=1,則BC的長為(

A.2+B.C.D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.

理解:

如圖1,點上,的平分線交于點,連接求證:四邊形是等補四邊形;

探究:

如圖2,在等補四邊形連接是否平分請說明理由.

運用:

如圖3,在等補四邊形中,,其外角的平分線交的延長線于點的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸于A,B兩點,交y軸于點C.直線經(jīng)過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設點P的橫坐標為m

①當是直角三角形時,求點P的坐標;

②作點B關于點C的對稱點,則平面內存在直線l,使點M,B,到該直線的距離都相等.當點Py軸右側的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

同步練習冊答案