如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.

(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.
解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC!嗨倪呅蜛ECD是梯形。
∵AB=AE,∴AE=CD!嗨倪呅蜛ECD是等腰梯形。∴AC=DE。
在△AED和△DCA中,∵AE=DC,DE=AC,AD=DA,
∴△AED≌△DCA(SSS)。
(2)∵DE平分∠ADC,∴∠ADC=2∠ADE。
∵四邊形AECD是等腰梯形,∴∠DAE=∠ADC=2∠AED。
∵DE與⊙A相切于點E,∴AE⊥DE,即∠AED=90°!唷螦DE=30°。∴∠DAE=60°。
∴∠DCE=∠AEC=180°﹣∠DAE=120°。
∵四邊形ACD是平行四邊形,∴∠BAD=∠DCE=120°。
∴∠BAE=∠BAD﹣∠EAD=60°。
。

試題分析:(1)由四邊形ABCD是平行四邊形,AB=AE,易證得四邊形AECD是等腰梯形,即可得AC=DE,然后由SSS,即可證得:△AED≌△DCA。
(2)由DE平分∠ADC且與⊙A相切于點E,可求得∠EAD的度數(shù),繼而求得∠BAE的度數(shù),然后由扇形的面積公式求得陰影部分(扇形)的面積。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,一動直線l從y軸出發(fā),以每秒1個單位長度的速度沿x軸向右平移,直線l與直線y=x相交于點P,以OP為半徑的⊙P與x軸正半軸交于點A,與y軸正半軸交于點B.設直線l的運動時間為t秒.

(1)填空:當t=1時,⊙P的半徑為       ,OA=       ,OB=       ;
(2)若點C是坐標平面內一點,且以點O、P、C、B為頂點的四邊形為平行四邊形.
①請你直接寫出所有符合條件的點C的坐標;(用含t的代數(shù)式表示)
②當點C在直線y=x上方時,過A、B、C三點的⊙Q與y軸的另一個交點為點D,連接DC、DA,試判斷△DAC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的弦AB垂直半徑OC于點D,∠CBA=30°,OC=3cm,則弦AB 的長為
A.9cmB.3cmC.cmD.cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2013年浙江義烏3分)已知圓錐的底面半徑為6cm,高為8cm,則這個圓錐的母線長為【   】
A.12cm    B.10cm C.8cmD.6cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川廣安9分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙0,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.

(1)求證:EF是⊙0的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐的側面積是底面積的4倍,則圓錐側面展開圖的扇形的圓心角是
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,AB=6,將△ABC繞點B順時針旋轉60°后得到△DBE,點A經過的路徑為弧AD,則圖中陰影部分的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC內接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為
A.3B.C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的半徑為1,直線CD經過圓心O,交⊙O于C、D兩點,直徑AB⊥CD,點M是直線CD上異于點C、O、D的一個動點,AM所在的直線交于⊙O于點N,點P是直線CD上另一點,且PM=PN.

(1)當點M在⊙O內部,如圖一,試判斷PN與⊙O的關系,并寫出證明過程;
(2)當點M在⊙O外部,如圖二,其它條件不變時,(1)的結論是否還成立?請說明理由;
(3)當點M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案