小明在學(xué)習(xí)二次函數(shù)時(shí),總結(jié)了如下規(guī)律:

函數(shù)解析式

開口方向

對(duì)稱軸

頂點(diǎn)坐標(biāo)

a>0時(shí),開口向上

a<0時(shí),開口向下

y軸

(0,0)

(0,k)

直線x=h

(h,0)

直線x=h

(1)請(qǐng)幫助小明補(bǔ)全此表①                                       

(2)根據(jù)此表判斷,如何將拋物線經(jīng)過適當(dāng)?shù)钠揭频玫綊佄锞.

(1)y軸、(h,k)  直線x=

  (2)先向右平移1個(gè)單位,再向上平移1個(gè)單位

得到

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小明在學(xué)習(xí)二次函數(shù)時(shí),總結(jié)了如下規(guī)律:精英家教網(wǎng)
(1)請(qǐng)幫助小明補(bǔ)全此表①
 
 
 
;
(2)根據(jù)此表判斷,如何將拋物線y=-2x2經(jīng)過適當(dāng)?shù)钠揭频玫綊佄锞y=-2x2+4x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個(gè)問題:若1≤x≤m,求二次函數(shù)y=x2-6x+7的最大值.他畫圖研究后發(fā)現(xiàn),x=1和x=5時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)m進(jìn)行分類討論.
他的解答過程如下:
∵二次函數(shù)y=x2-6x+7的對(duì)稱軸為直線x=3,
∴由對(duì)稱性可知,x=1和x=5時(shí)的函數(shù)值相等.
∴若1≤m<5,則x=1時(shí),y的最大值為2;
若m≥5,則x=m時(shí),y的最大值為m2-6m+7.
請(qǐng)你參考小明的思路,解答下列問題:
(1)當(dāng)-2≤x≤4時(shí),二次函數(shù)y=2x2+4x+1的最大值為
49
49

(2)若p≤x≤2,求二次函數(shù)y=2x2+4x+1的最大值;
(3)若t≤x≤t+2時(shí),二次函數(shù)y=2x2+4x+1的最大值為31,則t的值為
1或-5
1或-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小明在學(xué)習(xí)二次函數(shù)時(shí),總結(jié)了如下規(guī)律:
(1)請(qǐng)幫助小明補(bǔ)全此表①______②______③______;
(2)根據(jù)此表判斷,如何將拋物線y=-2x2經(jīng)過適當(dāng)?shù)钠揭频玫綊佄锞y=-2x2+4x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷17(高橋初中 李志堅(jiān))(解析版) 題型:解答題

小明在學(xué)習(xí)二次函數(shù)時(shí),總結(jié)了如下規(guī)律:
(1)請(qǐng)幫助小明補(bǔ)全此表①______②______③______;
(2)根據(jù)此表判斷,如何將拋物線y=-2x2經(jīng)過適當(dāng)?shù)钠揭频玫綊佄锞y=-2x2+4x+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案