【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例yk為常數(shù),且k≠0)的圖象交于A1,a),B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求PA+PB的最小值.

【答案】(1)y;點B坐標(31);(22

【解析】

1)把點A1,a)代入一次函數(shù)y=-x+4,即可得出a,再把點A坐標代入反比例函數(shù)y=,即可得出k,兩個函數(shù)解析式聯(lián)立求得點B坐標;

2)作點B作關(guān)于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB=PA+PD=AD的值最小,然后根據(jù)勾股定理即可求得.

1)把點A1,a)代入一次函數(shù)y=﹣x+4,

a=﹣1+4,

解得a3,

A1,3),

A1,3)代入反比例函數(shù)y

k3,

∴反比例函數(shù)的表達式y,

兩個函數(shù)解析式聯(lián)立列方程組得

解得x11,x23

∴點B坐標(3,1);

2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PBPA+PDAD的值最小,

D3,﹣1),

A1,3),

AD2,

PA+PB的最小值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)將△ABC沿x軸負方向平移2個單位,沿y軸正方向平移4個單位,得到△A1B1C1,請畫出A1B1C1

(2)將△ABC繞點A順時針旋轉(zhuǎn)90°,得到△AB2C2,請畫出△AB2C2

(3)△A1B1C1繞點P順時針旋轉(zhuǎn)90°,得到△AB2C2,則點P的坐標為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC是⊙O的直徑,B為⊙O上一點,D為的中點,過D作EF∥BC交AB的延長線于點E,交AC的延長線于點F.

(Ⅰ)求證:EF為⊙O的切線;

(Ⅱ)若AB=2,∠BDC=2∠A,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣10)、C03),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BCDB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個項目供學(xué)生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中一個項目.八年級(3)班班主任寧老師對全

班學(xué)生選擇的項目情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:

(1)八年級(3)班學(xué)生總?cè)藬?shù)是多少,并將條形統(tǒng)計圖補充完整;

(2)寧老師發(fā)現(xiàn)報名參加“植物識別”的學(xué)生中恰好有兩名男生,現(xiàn)準備從這組學(xué)生中任意挑選兩名擔任活動記錄員,那么恰好選1名男生和1名女生擔任活動記錄員的概率;

(3)若學(xué)校學(xué)生總?cè)藬?shù)為2000人,根據(jù)八年級(3)班的情況,估計全校報名軍事競技的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,點A,C,D分別為⊙O的三等分點,連接AC,ADDC,延長ADBM于點E,CDAB于點F

(1)求證:CDBM

(2)連接OE,若DEm,求OBE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一張簡易活動餐桌,測得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腳的張角∠COD的度數(shù)大小應(yīng)為( )

A. 100° B. 120° C. 135° D. 150°

查看答案和解析>>

同步練習(xí)冊答案