【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

【答案】B

【解析】試題解析:如圖,過DDMBEACN

四邊形ABCD是矩形,

ADBC,ABC=90°,AD=BC,

BEAC于點F

∴∠EAC=ACB,ABC=AFE=90°,

∴△AEF∽△CAB,故正確;

ADBC,

∴△AEF∽△CBF

,

AE=AD=BC

,

CF=2AF,故正確;

DEBMBEDM,

四邊形BMDE是平行四邊形,

BM=DE=BC

BM=CM,

CN=NF

BEAC于點F,DMBE,

DNCF,

DM垂直平分CF

DF=DC,故正確;

設(shè)AE=a,AB=b,則AD=2a,

BAE∽△ADC,有,即b=,

tanCAD=.故不正確;

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B(3,3)在雙曲線y=x>0)上,點D在雙曲線y=﹣x<0)上,點A和點C分別在x軸、y軸的正半軸上,且點A、BC構(gòu)成的四邊形為正方形

(1)求k的值;

(2)求點A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,AOB=90°,OA在x軸上,OB在y軸上,點A,B的坐標(biāo)分別為,0,0,1,把RtAOB沿著AB對折得到RtAOB,則點O的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一時刻,身高1.6m的小強(qiáng)的影長是1.2m,旗桿的影長是15m,則旗桿高為( )

A. 16m B. 18m C. 20m D. 22m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形兩邊長為方程x2﹣7x+10=0的兩根,則它的周長為(

A. 12 B. 129 C. 9 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2+mxy+4y2是完全平方式,則常數(shù)m的值為( 。

A. 4 B. ﹣4

C. ±4 D. 以上結(jié)果都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE5cm, 且tan∠EFC,那么矩形ABCD的周長_____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點C、AA,求此拋物線的解析式;

(2)點M時第一象限內(nèi)拋物線上的一動點,問:當(dāng)點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標(biāo);

(3)若P為拋物線上一動點,Nx軸上的一動點,點Q坐標(biāo)為(1,0),當(dāng)PN、B、Q構(gòu)成平行四邊形時,求點P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲數(shù)為x,乙數(shù)比甲數(shù)的3倍少6,則乙數(shù)表示為__

查看答案和解析>>

同步練習(xí)冊答案