【題目】如圖,在平面直角坐標(biāo)系x O y中,△ABC 三個(gè)頂點(diǎn)坐標(biāo)分別為A 1, 2),B7,2),C56.

(1)在圖中畫出△ABC外接圓的圓心P;

(2)圓心P的坐標(biāo)是______;

(3) tanACB=________.

【答案】1)詳見解析;(2)(4,3;33

【解析】

(1)AB,AC的中垂線,交于點(diǎn)P,即為所求點(diǎn);

(2)A 1, 2),B72),可求出點(diǎn)P的橫坐標(biāo),設(shè)點(diǎn)P的縱坐標(biāo)為y,連接PA,PC,

PA=PC,列出關(guān)于y的方程,即可求解;

(3)連接APBP,作△ABC外接圓,可得:∠ACB=APF,進(jìn)而求出tanACB的值.

1)作AB,AC的中垂線,交于點(diǎn)P,即為所求點(diǎn),如圖所示:

2)∵A 1 2),B7,2),C56,

∴點(diǎn)P的橫坐標(biāo)為(1+7÷2=4,

設(shè)點(diǎn)P的縱坐標(biāo)為y,連接PAPC,如圖1

∵點(diǎn)P是△ABC外接圓的圓心,

PA=PC,

,解得:y=3,

∴點(diǎn)P的坐標(biāo)是:(4,3),

故答案是:(4,3).

(3)連接AP,BP,作△ABC外接圓,如圖2

∵∠ACB=APB,∠APF=APB

∴∠ACB=APF,

tanACB= tanAPF ===3,

故答案是:3.

1 2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OAOB,CACB,⊙O交直線OBE,D,連接ECCD

1)求證:直線AB是⊙O的切線;

2)試猜想BC,BDBE三者之間的等量關(guān)系,并加以證明;

3)若tanCED,⊙O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】成都市某景區(qū)經(jīng)營(yíng)一種新上市的紀(jì)念品,進(jìn)價(jià)為20/件,試營(yíng)銷階段發(fā)現(xiàn);當(dāng)銷售單價(jià)是30元時(shí),每天的銷售量為200件;銷售單價(jià)每上漲2元,每天的銷售量就減少10.這種紀(jì)念品的銷售單價(jià)為x(元).

1)試確定日銷售量y(臺(tái))與銷售單價(jià)為x(元)之間的函數(shù)關(guān)系式;

2)若要求每天的銷售量不少于15件,且每件紀(jì)念品的利潤(rùn)至少為30元,則當(dāng)銷售單價(jià)定為多少時(shí),該紀(jì)念品每天的銷售利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.

(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?

(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙三個(gè)球迷決定通過(guò)抓鬮來(lái)確定誰(shuí)得到僅有的一張球票,他們準(zhǔn)備了三張紙片,紙片上分別寫上,然后將紙片折疊成外觀一致的紙團(tuán),抓到紙片的人可以得到球票.

1)如果讓甲從三張紙團(tuán)中先抓一張,則甲一次就抓到寫的紙片的概率為 (直接寫出答案);

2)抓鬮前,乙產(chǎn)生了疑問(wèn):誰(shuí)先抓?先抓的人會(huì)不會(huì)抓中的機(jī)會(huì)比別人大?你認(rèn)為乙的懷疑有沒有道理?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB=8,AD=6, 點(diǎn)E是邊CD上一個(gè)動(dòng)點(diǎn),連接AE,將AED沿直線AE翻折得AEF.

(1) 當(dāng)點(diǎn)C落在射線AF上時(shí),求DE的長(zhǎng);

(2)F為圓心,FB長(zhǎng)為半徑作圓F,當(dāng)AD與圓F相切時(shí),求cosFAB的值;

(3)PAB邊上一點(diǎn),當(dāng)邊CD上有且僅有一點(diǎn)Q滿∠BQP=45°,直接寫出線段BP長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線yx+4與拋物線y=﹣x2+bx+cbc是常數(shù))交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)By軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C

1)求該拋物線的解析式;

2P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)AB重合),

①如圖2,若點(diǎn)P在直線AB上方,連接OPAB于點(diǎn)D,求的最大值;

②如圖3,若點(diǎn)Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)EF恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計(jì),當(dāng)每輛車的月租金為3000元時(shí),可全部租出.每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加1輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2)當(dāng)每輛車的租金定為多少元時(shí),租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)到306600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,OAC上一點(diǎn),以點(diǎn)O為圓心,OC為半徑做圓,與BC相切于點(diǎn)C,過(guò)點(diǎn)AADBOBO的廷長(zhǎng)線于點(diǎn)D,且∠AOD=BAD

1)求證:AB為⊙O的切線;

2)若BC=6,tanABC=,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案