【題目】如圖所示.線段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點測得D點的仰角α=45°,則乙建筑物高DC=______米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.
(1)當(dāng)a=﹣1時,求拋物線頂點D的坐標(biāo),OE等于多少;
(2)OE的長是否與a值有關(guān),說明你的理由;
(3)設(shè)∠DEO=β,45°≤β≤60°,求a的取值范圍;
(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設(shè)P(m,n),直接寫出n關(guān)于m的函數(shù)解析式及自變量m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風(fēng)中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關(guān)系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車從甲地駛往乙地,到達乙地后立即返回甲地,速度是原來的1.5倍,往返共用t小時.一輛貨車同時從甲地駛往乙地,到達乙地后停止.兩車同時出發(fā),勻速行駛,設(shè)轎車行駛的時間為x(h),兩車離開甲地的距離為y(km),兩車行駛過程中y與x之間的函數(shù)圖象如圖所示.
(1)轎車從乙地返回甲地的速度為 km/t,t= h;
(2)求轎車從乙地返回甲地時y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)轎車從甲地返回乙地的途中與貨車相遇時,求相遇處到甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使得函數(shù)值為0的自變量的值稱為函數(shù)的零點.例如,對于函數(shù)y=x﹣1,令y=0可得x=1,我們說1是函數(shù)y=x﹣1的零點.已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))
(1)當(dāng)m=0時,求該函數(shù)的零點.
(2)證明:無論m取何值,該函數(shù)總有兩個零點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的平分線交于點,過點作交于點,以為直徑作⊙.
(1)求證:是⊙的切線;
(2) 若AC=3,BC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,直線分別與軸交于與反比例函數(shù)的圖象交于點,軸于點,.
(1)求反比例函數(shù)及一次函數(shù)的解析式.
(2)當(dāng)為何值時一次函數(shù)的值大于反比例函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com