【題目】如圖,點(diǎn)是直線上任一點(diǎn),射線和射線分別平分.

1)填空:與互補(bǔ)的角有______;

2)若,求的度數(shù);

3)當(dāng)時(shí),請(qǐng)直接寫(xiě)出的度數(shù).

【答案】1)∠AOD、∠COD;(290°;(390°.

【解析】

1)先根據(jù)角平分線的定義得出∠AOD=COD,再由∠AOD+BOD=180°,即可得出答案;

2)根據(jù)補(bǔ)角的定義和角平分線的定義求出∠COE,即可得出∠DOE;

3)根據(jù)角平分線的定義和補(bǔ)角的定義依次求出∠EOC和∠DOC,即可得出∠DOE

解:(1)∵OD平分∠AOC,∴∠AOD=COD;

∵∠AOD+BOD=180°,∴∠COD+BOD=180°,

∴與∠BOD互補(bǔ)的角是∠AOD和∠COD;

故答案為∠AOD、∠COD;

2)∵OD、OE分別平分∠AOC、∠BOC,

∴∠COD=AOD=26°,∠COE=BOE=BOC,

∴∠AOC=2×26°=52°,∴∠BOC=180°-52°=128°,

∴∠COE=BOC=64°,

∴∠DOE=COD+COE=90°;

3)當(dāng)時(shí),∠DOE=90°.

理由:∵OE平分∠BOC,∴∠COE=BOE=BOC=,

∴∠BOC=2,∴,

OD平分∠AOC,∴∠COD =AOC=,

∴∠DOE=EOC+DOC=+=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫(xiě)在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖, , ,,,P是邊BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPEAB,垂足為E,延長(zhǎng)PE至點(diǎn)Q,使PQ=PC, 聯(lián)結(jié)交邊AB于點(diǎn).

1)求AD的長(zhǎng);

2)設(shè),的面積為y, y關(guān)于x的函數(shù)解析式,并寫(xiě)出定義域;

3)過(guò)點(diǎn)C, 垂足為F, 聯(lián)結(jié)PFQF, 試探索當(dāng)點(diǎn)P在邊BC的什么位置時(shí),為等邊三角形?請(qǐng)指出點(diǎn)P的位置并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組:, 并把解集在數(shù)軸上表示出來(lái).

【答案】-3<x1

【解析】分析:分別解不等式,在數(shù)軸上表示出解集,找出解集的公共部分即可.

詳解:

解不等式①得:,

解不等式②得:

∴原不等式組的解集為-3<x≤1

解集在數(shù)軸上表示為:  

點(diǎn)睛:考查解一元一次不等式組,比較容易,分別解不等式,找出解集的公共部分即可.

型】解答
結(jié)束】
17

【題目】下圖是由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格,線段AB的端點(diǎn)在格點(diǎn)上.

(1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點(diǎn)的坐標(biāo)為(-3,-1),在此坐標(biāo)系下,B點(diǎn)的坐標(biāo)為________________;

(2)將線段BA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得線段BC,畫(huà)出BC;在第(1)題的坐標(biāo)系下,C點(diǎn)的坐標(biāo)為__________________;

(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)O、B、C三點(diǎn),則此函數(shù)圖象的對(duì)稱(chēng)軸方程是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)圖象交于第二,四象限內(nèi)A,B兩點(diǎn),軸交于點(diǎn)C,軸交于點(diǎn)D.若點(diǎn)B的縱坐標(biāo)為,OA=5, .

(1)求反比例函數(shù)解析式;

(2)△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

周末,小明從城里去渡假村接父母回家,為了欣賞路邊的風(fēng)景,小明從城里步行出發(fā),同時(shí)父母也從渡假村步行出發(fā),相向而行,城里距渡假村,小明每小時(shí)走,父母每小時(shí)走,如果小明帶一只狗和他同時(shí)出發(fā),狗以每小時(shí)的速度向父母方向跑去,遇到父母后又立即回頭跑向小明,遇到小明后又立即回頭跑向父母,這樣往返直到二人相遇.

1)小明與父母經(jīng)過(guò)多少小時(shí)相遇?

2)這只狗共跑了多少呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察表格:

1條直線

0個(gè)交點(diǎn)

平面分成(1+1)塊

2條直線

1個(gè)交點(diǎn)

平面分成(1+1+2)塊

3條直線

1+2)個(gè)交點(diǎn)

平面分成(1+1+2+3)塊

4條直線

1+2+3)個(gè)交點(diǎn)

平面分成(1+1+2+3+4)塊

根據(jù)表格中的規(guī)律解答問(wèn)題:

15條直線兩兩相交,有   個(gè)交點(diǎn),平面被分成   塊;

2n條直線兩兩相交,有   個(gè)交點(diǎn),平面被分成   塊;

3)應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題:一張圓餅切10刀(不許重疊),最多可得到   塊餅.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知2型節(jié)能燈和5型節(jié)能燈共需45元;4型節(jié)能燈和3型節(jié)能燈共需41.

(1)求一只型節(jié)能燈和一只型節(jié)能燈的售價(jià)各是多少元.

(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且型節(jié)能燈的數(shù)量不多于型節(jié)能燈數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB110°,∠COD40°,OE平分∠AOC,OF平分∠BOD

1)如圖,求∠EOF的度數(shù).

2)如圖,當(dāng)OBOC重合時(shí),求∠AOE﹣∠BOF的值;

3)當(dāng)∠COD從圖的位置繞點(diǎn)O以每秒的速度順時(shí)針旋轉(zhuǎn)t秒(0t10);在旋轉(zhuǎn)過(guò)程中∠AOE﹣∠BOF的值是否會(huì)因t的變化而變化,若不發(fā)生變化,請(qǐng)求出該定值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案