【題目】如圖,線段,動點(diǎn)的速度從在線段上運(yùn)動,到達(dá)點(diǎn)后,停止運(yùn)動;動點(diǎn)的速度從在線段上運(yùn)動,到達(dá)點(diǎn)后,停止運(yùn)動.若動點(diǎn)同時(shí)出發(fā),設(shè)點(diǎn)的運(yùn)動時(shí)間是(單位:)時(shí),兩個(gè)動點(diǎn)之間的距離為S(單位:),則能表示的函數(shù)關(guān)系的是( )

A. B.

C. D.

【答案】D

【解析】

根據(jù)題意可以得到點(diǎn)P運(yùn)動的快,點(diǎn)Q運(yùn)動的慢,可以算出動點(diǎn)PQ相遇時(shí)用的時(shí)間和點(diǎn)Q到達(dá)終點(diǎn)時(shí)的時(shí)間,從而可以解答本題.

:設(shè)點(diǎn)Q的運(yùn)動時(shí)間是t(單位:s)時(shí),兩個(gè)動點(diǎn)之間的距離為s(單位:cm),

6=2t+t,解得:t=2,即t=2時(shí),P、Q相遇,即S=0,.

P到達(dá)B點(diǎn)的時(shí)間為:6÷2=3s,此時(shí),點(diǎn)Q距離B點(diǎn)為:3,即S=3

P點(diǎn)全程用時(shí)為12÷2=6s,Q點(diǎn)全程用時(shí)為6÷1=6s,即P、Q同時(shí)到達(dá)A點(diǎn)

由上可得,剛開始PQ兩點(diǎn)間的距離在越來越小直到相遇時(shí),它們之間的距離變?yōu)?/span>0,此時(shí)用的時(shí)間為2s

相遇后,在第3s時(shí)點(diǎn)P到達(dá)B點(diǎn),從相遇到點(diǎn)P到達(dá)B點(diǎn)它們的距離在變大,1sP點(diǎn)從B點(diǎn)返回,點(diǎn)P繼續(xù)運(yùn)動,兩個(gè)動點(diǎn)之間的距離逐漸變小,同時(shí)達(dá)到A點(diǎn).

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點(diǎn),與y軸交于點(diǎn)C.
(1)設(shè)AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點(diǎn)D為直線BC下方拋物線上一動點(diǎn),當(dāng)△BCD的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時(shí)成立,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為(
A.20
B.25
C.30
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)計(jì)劃從辦公用品公司購買A,B兩種型號的小黑板.經(jīng)洽談,購買一塊A型小黑板比購買一塊B型小黑板多用20元,且購買5A型小黑板和4B型小黑板共需820元.

1)求購買一塊A型小黑板、一塊B型小黑板各需多少元;

2)根據(jù)該中學(xué)實(shí)際情況,需從公司購買A,B兩種型號的小黑板共60塊,要求購買A,B兩種型號小黑板的總費(fèi)用不超過5240元.并且購買A型小黑板的數(shù)量不小于購買B型小黑板數(shù)量的.則該中學(xué)從公司購買A,B兩種型號的小黑板有哪幾種方案.哪種方案的總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知ABCD,EFAB于點(diǎn)O,FGC=125°,求EFG的度數(shù).

下面提供三種思路:

(1)過點(diǎn)F作FHAB;

(2)延長EF交CD于M;

(3)延長GF交AB于K.

請你利用三個(gè)思路中的兩個(gè)思路,

將圖形補(bǔ)充完整,求EFG的度數(shù).

解(一):

解(二):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形△ABC中,∠C90°AD平分∠BACBC于點(diǎn)D,BE平分∠ABCAC于點(diǎn)EAD、BE相交于點(diǎn)F,過點(diǎn)DDGAB,過點(diǎn)BBGDGDG于點(diǎn)G.下列結(jié)論:①∠AFB135°;②∠BDG2CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正確的是_________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,M、N分別是AB、AC的中點(diǎn),D、E為BC上的點(diǎn),連接DN、EM,若AB=5cm,BC=8cm,DE=4cm,則圖中陰影部分的面積為( )

A.1cm2
B.1.5cm2
C.2cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級,級:對學(xué)習(xí)很感興趣;級:對學(xué)習(xí)較感興趣;級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生;

2)將圖①補(bǔ)充完整;

3)求出圖②中級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該縣近12000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括級和級)?

查看答案和解析>>

同步練習(xí)冊答案