【題目】如圖:已知AB∥CD,EF⊥AB于點O,∠FGC=125°,求∠EFG的度數(shù).
下面提供三種思路:
(1)過點F作FH∥AB;
(2)延長EF交CD于M;
(3)延長GF交AB于K.
請你利用三個思路中的兩個思路,
將圖形補充完整,求∠EFG的度數(shù).
解(一):
解(二):
【答案】見解析
【解析】
試題分析:(一)過點F作FH∥AB,求出∠EFH,求出∠GFH,相加即可;
(二)延長EF交CD于M,求出∠GMF、根據(jù)三角形外角性質(zhì)求出∠GFM,即可求出答案.
解:(一)
利用思路(1)過點F 作FH∥AB,
∵EF⊥AB,
∴∠BOF=90°,
∵FH∥AB,
∴∠HFO=∠BOF=90°,
∵AB∥CD,
∴FH∥CD,
∴∠FGC+∠GFH=180°,
∵∠FGC=125°,
∴∠GFH=55°,
∴∠EFG=∠GFH+∠HFO=55°+90°=145°;
解:(二)
利用思路(2)延長EF交CD于M,
∵EF⊥AB,
∴∠BOF=90°,
∵CD∥AB,
∴∠CMF=∠BOF=90°,
∵∠FGC=125°,
∴∠1=55°,
∵∠1+∠2+∠GMF=180°,
∴∠2=35°,
∵∠GFO+∠2=180°,
∴∠GFO=145°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在平面直角坐標系中,A(a,0),C(b,2),過C作CB⊥x軸,且滿足(a+b)2+=0.
(1)求三角形ABC的面積.
(2)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,求∠AED的度數(shù).
(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店把一商品按標價的九折出售(即優(yōu)惠10%),仍可獲利20%,若該商品的標價為每件28元,則該商品的進價為( )
A.21元
B.19.8元
C.22.4元
D.25.2元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走:
(1)假如每天能運x立方米,所需時間為y天,寫出y與x之間的函數(shù)表達式;
(2)若每輛拖拉機一天能運12立方米,則5輛這樣的拖拉機要用多少天才能運完?
(3)在(2)的情況下,運了8天后,剩下的任務(wù)要在不超過6天的時間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距S千米,某人行完全程所用的時間t(時)與他的速度v(千米/時)滿足vt=S,在這個變化過程中,下列判斷中錯誤的是 ( )
A.S是變量 B.t是變量 C.v是變量 D.S是常量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綿陽市“全國文明村”江油白玉村果農(nóng)王燦收獲枇杷20噸,桃子12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批水果全部運往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.
(1)王燦如何安排甲、乙兩種貨車可一次性地運到銷售地有幾種方案?
(2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果農(nóng)王燦應(yīng)選擇哪種方案,使運輸費最少?最少運費是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com