【題目】如圖,將矩形ABCD的四個角向內(nèi)折疊鋪平,恰好拼成一個無縫隙無重疊的矩形EFGH,若EH5EF12,則矩形ABCD的面積是(

A. 13 B. C. 60 D. 120

【答案】D

【解析】

由折疊圖形的性質(zhì)求得∠HEF=90°,則∠HEF=EFG=FGH=GHE=90 得到四邊形EHFG是矩形,再由折疊的性質(zhì)得矩形ABCD的面積等于矩形EFGH面積的2倍,根據(jù)已知數(shù)據(jù)即可求出矩形ABCD的面積.

如圖,

根據(jù)折疊的性質(zhì)可得∠AEH=MEH,∠BEF=FEM,

∴∠AEH+BEF=MEH+FEM,

∴∠HEF=90°,

同理得∠HEF=EFG=FGH=GHE=90

∴四邊形EHFG是矩形,

由折疊的性質(zhì)得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;

故答案為:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°RtBAP中,∠BAP90°,已知∠CBO=∠ABPBPAC于點O,EAC上一點,且AEOC.

(1)求證:APAO;

(2)求證:PEAO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( ).

A.在一個角的內(nèi)部(包括頂點)到角的兩邊距離相等的點的軌跡是這個角的平分線

B.到點距離等于的點的軌跡是以點為圓心,半徑長為的圓

C.到直線距離等于的點的軌跡是兩條平行于且與的距離等于的直線

D.等腰三角形的底邊固定,頂點的軌跡是線段的垂直平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Ax1,y1),Bx2,y2),Cx3,y3)都在反比例函數(shù)的圖象上,且x1x2x3,(

A. ,則++0B. ,則0

C. ,則++0D. ,則0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正三角形紙片剪成四個小正三角形,得到個小正三角形,稱為第一次操作; 然后,將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第二次操作;再將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到個小正三角形,則需要操作的次數(shù)是__________次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】互為相反數(shù),互為倒數(shù),且的立方等于它本身.

,求的值;

試討論:當(dāng)為有理數(shù)時,是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由;

,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對角線ACBD交于點O,給出下列四個論斷:

OA=OC,AB=CD,③∠BAD=DCB,ADBC.

請你從中選擇兩個論斷作為條件,以四邊形ABCD為平行四邊形作為結(jié)論,完成下列各題:

(1)構(gòu)造一個真命題,畫圖并給出證明;

(2)構(gòu)造一個假命題,舉反例加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名同學(xué)中選拔一人參加中華好詩詞大賽,在相同的測試條件下,對兩人進(jìn)行了五次模擬,并對成績(單位:分)進(jìn)行了整理,計算出=83分,=82分,繪制成如下尚不完整的統(tǒng)計圖表.

甲、乙兩人模擬成績統(tǒng)計表

甲成績/

79

86

82

a

83

乙成績/

88

79

90

81

72

根據(jù)以上信息,回答下列問題:

(1)a=   

(2)請完成圖中表示甲成績變化情況的折線.

(3)經(jīng)計算S2=6,S2=42,綜合分析,你認(rèn)為選拔誰參加比賽更合適,說明理由.

(4)如果分別從甲、乙兩人5次的成績中各隨機抽取一次成績進(jìn)行分析,求抽到的兩個人的成績都大于82分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案