如圖,已知.△ABC頂點(diǎn)的坐標(biāo)分別是A(-2,-4),B(-2,2),C(0,-2).
(1)將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A1B1C,畫出△A1B1C,并寫出點(diǎn)A1和B1的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)圖象經(jīng)過(guò)點(diǎn)A1、B1和C,求該函數(shù)解析式和頂點(diǎn)坐標(biāo)D;
(3)畫出在(2)中函數(shù)的大致圖象,并指出當(dāng)x取何范圍的值時(shí),函數(shù)值y隨x增大而增大?若y>0,請(qǐng)寫出x的取值范圍.

【答案】分析:(1)利用將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A1B1C,分別將A,B,C,旋轉(zhuǎn)得出對(duì)應(yīng)點(diǎn)的坐標(biāo)即可得出答案;
(2)利用待定系數(shù)法求二次函數(shù)解析式即可得出答案,再利用配方法求出頂點(diǎn)坐標(biāo)即可;
(3)利用函數(shù)圖象的交點(diǎn)坐標(biāo)以及對(duì)稱軸得出答案即可.
解答:解:(1)如圖所示:
A1(-2,0),B1(4,0),

(2)∵拋物線經(jīng)過(guò)A1(-2,0),B1(4,0)和C(0,-2),
,
解得:,
∴y=x2-x-2,
=(x2+2x+1-1)-2;
=(x-1)2-;
∴頂點(diǎn)坐標(biāo)D為:(1,-);

(3)已知點(diǎn)的坐標(biāo)畫出圖象即可,如圖所示:
由圖象可知:當(dāng)x>1時(shí),函數(shù)值y隨x增大而增大,
當(dāng)x<-2或x>4時(shí),y>0.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及圖形的旋轉(zhuǎn)變換和二次函數(shù)的增減性,利用數(shù)形結(jié)合得出二次函數(shù)的值的變化是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開(kāi)始,沿AB邊向點(diǎn)B以1cm/S的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),(其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也停止運(yùn)動(dòng)),設(shè)經(jīng)過(guò)t秒.
(1)如果P、Q分別從A、B兩點(diǎn)同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于△ABC的面積的
13

(2)在(1)中,△PQB的面積能否等于10cm2?請(qǐng)說(shuō)明理由.
(3)若P、Q分別從A、B兩點(diǎn)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于6cm?
(4)P、Q在移動(dòng)的過(guò)程中,是否存在某一時(shí)刻t,使得PQ∥AC?若存在求出t的值,若不存在請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求證:BF=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:△ABC為等邊三角形,D、F分別為射線BC、射線AB邊上的點(diǎn),BD=AF,以AD為邊作等邊△ADE.
(1)如圖①所示,當(dāng)點(diǎn)D在線段BC上時(shí):
①試說(shuō)明:△ACD≌△CBF;②判斷四邊形CDEF的形狀,并說(shuō)明理由;
(2)如圖②所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),判斷四邊形CDEF的形狀,并說(shuō)明理由.
(3)當(dāng)點(diǎn)D在射線BC上移動(dòng)到何處時(shí),∠DEF=30°,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=36°,BD為∠ABC的平分線,則
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,D是邊BC的中點(diǎn),點(diǎn)E在邊BA的延長(zhǎng)線上,AE=AB,
BA
=
a
,
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步練習(xí)冊(cè)答案