【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路L步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補(bǔ)全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

【答案】
(1)解:設(shè)小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數(shù)關(guān)系式為y2=k2x+b,由圖象,得

,

解得: ,

∴y2=﹣200x+2000


(2)解:由題意,得

小明的速度為:2000÷40=50米/分,

小亮的速度為:2000÷10=200米/分,

∴小亮從甲地追上小明的時間為(24×50)÷(200﹣50)=8分鐘,

∴24分鐘時兩人的距離為:S=24×50=1200,32分鐘時S=0,

設(shè)S與x之間的函數(shù)關(guān)系式為:S=kx+b1,由題意,得

,

解得: ,

∴S=﹣150x+4800(24≤x≤32)


(3)解:由題意,得

a=2000÷(200+50)=8分鐘,

當(dāng)x=24時,S=1200,

設(shè)經(jīng)過x分鐘追上小明,則200x﹣50x=1200,解得x=8,此時的總時間就是24+8=32分鐘.

故描出相應(yīng)的點就可以補(bǔ)全圖象.

如圖:


【解析】(1)設(shè)小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數(shù)關(guān)系式為y2=k2x+b,由待定系數(shù)法根據(jù)圖象就可以求出解析式;(2)先根據(jù)函數(shù)圖象求出甲乙的速度,然后與追擊問題就可以求出小亮追上小明的時間,就可以求出小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;(3)先根據(jù)相遇問題建立方程就可以求出a值,10分鐘甲、乙走的路程就是相距的距離,14分鐘小明走的路程和小亮追到小明時的時間就可以補(bǔ)充完圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價和市場價分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在公園的O處附近有E,F(xiàn),G,H四棵樹,位置如圖所示(圖中小正方形的邊長均相等)現(xiàn)計劃修建一座以O(shè)為圓心,OA為半徑的圓形水池,要求池中不留樹木,則E,F(xiàn),G,H四棵樹中需要被移除的為( 。
A.E,F(xiàn),G
B.F,G,H
C.G,H,E
D.H,E,F(xiàn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生利用雙休時間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車沿相同路線出發(fā),結(jié)果他們同時到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度和汽車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(π﹣5)0+ ﹣|﹣3|
(2)3a+(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點A在反比例函數(shù) 的圖象上,第二象限內(nèi)的點B在反比例函數(shù) 的圖象上,連接OA、OB,若OA⊥OB,OB= OA,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點A(6,0),點B(0,6),動點C在以半徑為3的⊙O上,連接OC,過O點作OD⊥OC,OD與⊙O相交于點D(其中點C、O、D按逆時針方向排列),連接AB.
(1)當(dāng)OC∥AB時,∠BOC的度數(shù)為;
(2)連接AC,BC,當(dāng)點C在⊙O上運(yùn)動到什么位置時,△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當(dāng)OC∥AD時,①求出點C的坐標(biāo);②直線BC是否為⊙O的切線?請作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個奇數(shù)是2013,則m的值是( )
A.43
B.44
C.45
D.46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列標(biāo)志既是軸對稱圖形又是中心對稱圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案