【題目】已知如圖,BECD,BE=DE,BC=DA.

求證:(1)BEC≌△DAE;

(2)DFBC.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:此題主要考查學(xué)生對(duì)全等三角形的判定及性質(zhì)的理解及運(yùn)用.全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.

1)根據(jù)已知利用HL即可判定△BEC≌△DEA

2)根據(jù)第(1)問的結(jié)論,利用全等三角形的對(duì)應(yīng)角相等可得到∠B=∠D,從而不難求得DF⊥BC

試題解析:證明:(1∵BE⊥CD,

∴∠BEC=∠DEA=90°,

Rt△BECRt△DEA中,

∴△BEC≌△DEAHL);

2由(1)知,△BEC≌△DEA,

∴∠B=∠D

∵∠D+∠DAE=90°,∠DAE=∠BAF,

∴∠BAF+∠B=90°,即DF⊥BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)角與它的補(bǔ)角的度數(shù)之比為18,求這個(gè)角的余角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請(qǐng)你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級(jí),75≤x≤85B級(jí),60≤x≤75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了 名學(xué)生,α= %

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為 度;

4)若該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=90,AB=AC.點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)BC重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,使DAE=90,連結(jié)CE.

探究:如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),證明BC=CE+CD.

應(yīng)用:在探究的條件下,若AB=CD=1,則DCE的周長為_______.

拓展:(1)如圖②,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),BC、CDCE之間的數(shù)量關(guān)系為_______.

(2)如圖③,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)已知:如圖,平行四邊形ABCD中,OCD的中點(diǎn),連接AO并延長,交BC的延長線于點(diǎn)E

1)(4分)求證:△AOD≌△EOC;

2)(5分)連接AC,DE,當(dāng)∠B=∠AEB= °時(shí),四邊形ACED是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Aa,5)與點(diǎn)B3b)關(guān)于y軸對(duì)稱,則a+b=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=m+1x2|m|+n+4

1)當(dāng)mn取何值時(shí),yx的一次函數(shù)?

2)當(dāng)mn取何值時(shí),yx的正比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°AC=4,BC=2PAB邊上一動(dòng)點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)EP的右側(cè),且PE=1,連結(jié)CEP從點(diǎn)A出發(fā),沿AB方向運(yùn)動(dòng),當(dāng)E到達(dá)點(diǎn)B時(shí),P停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過程中,圖中陰影部分面積S1+S2的大小變化情況是( )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

同步練習(xí)冊(cè)答案