【題目】在△ABC中,∠BAC=90,AB=AC.點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,使DAE=90,連結(jié)CE.
探究:如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),證明BC=CE+CD.
應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為_______.
拓展:(1)如圖②,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為_______.
(2)如圖③,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為_______.
【答案】探究:證明見解析;應(yīng)用: ;拓展:(1)BC= CD-CE,(2)BC= CE-CD
【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;
應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.
試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應(yīng)用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據(jù)勾股定理得,DE=,
∴△DCE的周長為CD+CE+DE=2+
故答案為:2+
拓展:(1)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;
(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為:BC=CE-CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作一條線段的垂直平分線
已知:線段AB
小蕓的作法如下:
如圖,(1)分別以點(diǎn)A和點(diǎn)B為圓心,大于 AB的長為半徑作弧,兩弧相交于C,D兩點(diǎn);(2)作直線CD.
老師說:“小蕓的作法正確.”
請回答:小蕓的作圖依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園把一筐桔子分給若干個(gè)小朋友,若每人3只,那么還剩59只,若每人5只,那么最后一個(gè)小朋友分到桔子,但不足4只,試求這筐桔子共有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖是指( )
A.用直尺規(guī)范作圖
B.用刻度尺和圓規(guī)作圖
C.用沒有刻度的直尺和圓規(guī)作圖
D.直尺和圓規(guī)是作圖工具
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點(diǎn)為M,與y軸的交點(diǎn)為N,我們稱以N為頂點(diǎn),對稱軸是y軸且過點(diǎn)M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點(diǎn)為M,與y軸交點(diǎn)為N,將它的衍生直線MN先繞點(diǎn)N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個(gè)單位得直線n,P是直線n上的動點(diǎn),是否存在點(diǎn)P,使△POM為直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M沿路線O→A→C運(yùn)動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5,它們除數(shù)字外沒有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若所選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com