如果等腰三角形的底與腰的比為0.618,則我們稱之為:黃金三角形:請(qǐng)你作出一個(gè)黃金三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時(shí),|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西寧)如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點(diǎn)所在的直線自右向左勻速運(yùn)動(dòng)至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點(diǎn)所在的直線自右向左勻速運(yùn)動(dòng)至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為

A.       B.       C.        D.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點(diǎn)所在的直線自右向左勻速運(yùn)動(dòng)至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案