【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
請結合圖表完成下列各題:
(1)①表中a的值為 ; ②頻數分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是
(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
【答案】(1)12.(2)補圖見解析;(3)0.44;(4).
【解析】試題分析:(1)①根據題意和表中的數據可以求得a的值;②由表格中的數據可以將頻數分布表補充完整;(2)根據表格中的數據和測試成績不低于80分為優(yōu)秀,可以求得優(yōu)秀率;(3)根據題意可以求得所有的可能性,從而可以得到小明與小強兩名男同學能分在同一組的概率.
試題解析:
(1)①由題意和表格,可得a=50681410=12,即a的值是12;
②補充完整的頻數分布直方圖如下圖所示,
(2)∵測試成績不低于80分為優(yōu)秀,
∴本次測試的優(yōu)秀率是:×100%=44%;
(3)設小明和小強分別為A.B,另外兩名學生為:C.D,
則所有的可能性為:(AB)、(AC)、(AD)、(BA)、(BC)、(BD),
所以小明和小強分在一起的概率為:.
科目:初中數學 來源: 題型:
【題目】勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦。我國西漢《周髀算經》中周公與商高對話中涉及勾股定理,所以這個定理也有人稱商高定理,勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯于公元前550年發(fā)現的。
我們知道,可以用一個數表示數軸上的一個點,而每個數在數軸上也有一個點與之對應,F在把這個數軸叫做x軸,同時,增加一個垂直于x軸的數軸,叫做y軸,如下圖。這樣,我們可以用一組數對來表示平面上的一個點,同時,平面上的一個點也可以用一組數對來表示,比如下圖中A點的位置可以表示為(2,3),而數對(2,3)所對應的點即為A。若平面上的點M ,N ,我們定義點M、N在x軸方向上的距離為: ,點M、N在y軸方向上的距離為: 。例如,點G(3,4)與點H(1,-1)在x軸方向上的距離為:|3-1|=2,點M、N在y軸方向上的距離為:|4-(-1)|=5。
(1)若點B位置為(-1,-1),請在圖中畫出點B;圖中點C的位置用數對______來表示。
(2)在(1)條件下,A、B兩點在x軸方向上的距離為________,在y軸方向上的距離為_______,A、B兩點間的距離為______;若E點、F點的位置分別為(a,b)、(c,d),點E、F之間的距離為|EF|,則=_______________。
(3)有一個點D,它與(0,0)點的距離為1,請畫出D點所有可能的位置。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在銳角△ABC中,AB=AC,AD為BC邊上的高,E為AC中點.
(1)如圖1,過點C作CF⊥AB于F點,連接EF.若∠BAD=20°,求∠AFE的度數;
(2)若M為線段BD上的動點(點M與點D不重合),過點C作CN⊥AM于N點,射線EN,AB交于P點.
①依題意將圖2補全;
②小宇通過觀察、實驗,提出猜想:在點M運動的過程中,始終有∠APE=2∠MAD.
小宇把這個猜想與同學們進行討論,形成了證明該猜想的幾種想法:
想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD.
想法2:設∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通過角度計算得∠APE=2α.
想法3:在NE上取點Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……
請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)有4張桌子,用第一種擺設方式,可以坐 人;用第二種擺設方式,可以坐 人;
(2)有n張桌子,用第一種擺設方式可以坐 人;用第二種擺設方式,可以坐 人(用含有n的代數式表示);
(3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經理,你打算選擇哪種方式來擺放餐桌,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中, ,點P在邊 上,且滿足 .
(1)畫出點P的位置(尺規(guī)作圖,保留痕跡);
(2)①若 , ,則 的周長為;
②若 ,則 °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知點A、B是反比例函數y=﹣上在第二象限內的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的有( ) ①無理數是無限小數;②無限小數是無理數;③開方開不盡的數是無理數;④兩個無理數的和一定是無理數;⑤無理數的平方一定是有理數.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com