【題目】小敏思考解決如下問題:

原題:如圖1,四邊形ABCD,,PQ分別在四邊形ABCD的邊BC,CD上,,求證:

______

小敏進行探索,如圖2,將點P,Q的位置特殊化,使,,點E,F分別在邊BCCD上,此時她證明了請你證明此時結論;

受以上的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為EF,請你繼續(xù)完成原題的證明.

【答案】(1);(2)見解析;(3)見解析.

【解析】

先根據等量代換得:,由四邊形的內角和為可得結論;的結論得到,證明,根據全等三角形的性質證明;

根據菱形的面積公式、結合的結論解答.

證明,可得結論.

解:如圖1,

,

,

故答案為:

如圖2,

,,

,

,

,

,,

;

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調查,把調查結果分為四類(A.特別好,B.好,C.一般,D.較差)后,再將調查結果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據統(tǒng)計圖解答下列問題:

(1)本次調查中,王老師一共調查了名學生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)假定全校各班實施新課程改革效果一樣,全校共有學生2 400人,請估計該校新課程改革效果達到A類的有多少學生;
(4)為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市開展一項自行車旅游活動,線路需經A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結果保留整數(shù),參考數(shù)據:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電信公司推出甲、乙兩種收費方式供手機用戶選擇:

甲種方式:每月收月租費5元,每分鐘通話費為元;

乙種方式:不收月租費,每分鐘通話費為元;

請分別寫出甲乙兩種收費方式每月付費、與通話時間分鐘之間函數(shù)表達式;

如何根據通話時間的多少選擇付費方式,請給出你的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次實驗中,小明把一根彈簧的上端固定,在其下端懸掛物體,下表是測得的彈簧的長度與所掛物體的質量的幾組對應值:

(1)上述表格反映了兩個變量之間的關系,哪個是自變量?哪個是因變量?

(2)寫出彈簧長度與所掛物體質量的關系式;

(3)若彈簧的長度為30cm時,此進所掛重物的質量是多少?(在彈簧的允許范圍內)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),ABCD,猜想∠BPD與∠B.D的關系,說明理由.(提示:三角形的內角和等于180°)

①填空或填寫理由

解:猜想∠BPD+B+D=360°

理由:過點PEFAB,

∴∠B+BPE=180°______

ABCD,EFAB

___________,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解題方法,觀察圖(2),已知ABCD,猜想圖中的∠BPD與∠B.D的關系,并說明理由.

③觀察圖(3)(4),已知ABCD,直接寫出圖中的∠BPD與∠B.D的關系,不說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y= 經過Rt△BOC斜邊上的點A,且滿足 = ,與BC交于點D,SBOD=21,求k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計劃多生產 50 臺機器,現(xiàn)在生產 600 臺機器所需時間與原計劃生產 450 臺機器所需時間相同.

(1)現(xiàn)在平均每天生產多少臺機器;

(2)生產 3000 臺機器,現(xiàn)在比原計劃提前幾天完成.

查看答案和解析>>

同步練習冊答案