(2008•沈陽)如圖所示,某河堤的橫斷面是梯形ABCD,BC∥AD,迎水坡AB長13米,且tan∠BAE=,則河堤的高BE為    米.
【答案】分析:在Rt△ABE中,根據(jù)tan∠BAE的值,可得到BE、AE的比例關(guān)系,進而由勾股定理求得BE、AE的長,由此得解.
解答:解:因為tan∠BAE=
設(shè)BE=12x,則AE=5x;
在Rt△ABE中,由勾股定理知:AB2=BE2+AE2,
即:132=(12x)2+(5x)2,
169=169x2,
解得:x=1或-1(負值舍去);
所以BE=12x=12(米).
點評:本題主要考查的是銳角三角函數(shù)的定義和勾股定理的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(2008•沈陽)如圖,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);(2)若OC=3,AB=8,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省新課標中考數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(4)(解析版) 題型:解答題

(2008•沈陽)如圖所示,在6×6的方格紙中,每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形,如圖①中的三角形是格點三角形.
(1)請你在圖①中畫一條直線將格點三角形分割成兩部分,將這兩部分重新拼成兩個不同的格點四邊形,并將這兩個格點四邊形分別畫在圖②,圖③中;
(2)直接寫出這兩個格點四邊形的周長.

查看答案和解析>>

同步練習冊答案