【題目】如圖,四邊形ABCD與EFGH均為正方形,點(diǎn)B、F在函數(shù)y= (x>0)的圖象上,點(diǎn)G、C在函數(shù)y=﹣ (x<0)的圖象上,點(diǎn)A、D在x軸上,點(diǎn)H、E在線段BC上,則點(diǎn)G的縱坐標(biāo) .
【答案】 +1
【解析】解:設(shè)線段AB的長(zhǎng)度為a,線段EF的長(zhǎng)度為b(a>0,b>0), 令y= (x>0)中y=a,則x= ,
即點(diǎn)B的坐標(biāo)為( ,a);
令y=﹣ (x<0)中y=a,則x=﹣ ,
即點(diǎn)C的坐標(biāo)為(﹣ ,a).
∵四邊形ABCD為正方形,
∴ ﹣(﹣ )=a,
解得:a=2,或a=﹣2(舍去).
令y= (x>0)中y=2+b,則x= ,
即點(diǎn)F的坐標(biāo)為( ,2+b);
令y=﹣ (x<0)中y=2+b,則x=﹣ ,
即點(diǎn)G的坐標(biāo)為(﹣ ,2+b).
∵四邊形EFGH為正方形,
∴ +(﹣ )=b,即b2+2b﹣4=0,
解得:b= ﹣1,或b=﹣ ﹣1(舍去).
∴a+b=2+ ﹣1= +1.
所以答案是: +1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD、CE是△ABC的兩條中線,P是AD上一個(gè)動(dòng)點(diǎn),則下列線段的長(zhǎng)度等于BP+EP最小值的是( )
A.BC
B.CE
C.AD
D.AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“閱讀季”活動(dòng),小明調(diào)查了班級(jí)里40名同學(xué)計(jì)劃購(gòu)書(shū)的花費(fèi)情況,并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖,根據(jù)圖中相關(guān)信息,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.12和10
B.30和50
C.10和12
D.50和30.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是( )
A.4
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且∠AFE=∠A,DM∥EF交AC于點(diǎn)M.
(1)點(diǎn)G在BE上,且∠BDG=∠C,求證:DGCF=DMEG;
(2)在圖中,取CE上一點(diǎn)H,使∠CFH=∠B,若BG=1,求EH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷(xiāo)售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個(gè)不同地方按不同銷(xiāo)售方案進(jìn)行銷(xiāo)售,以便開(kāi)拓市場(chǎng). 若只在甲城市銷(xiāo)售,銷(xiāo)售價(jià)格為y(元/件)、月銷(xiāo)量為x(件),y是x的一次函數(shù),如表,
月銷(xiāo)量x(件) | 1500 | 2000 |
銷(xiāo)售價(jià)格y(元/件) | 185 | 180 |
成本為50元/件,無(wú)論銷(xiāo)售多少,每月還需支出廣告費(fèi)72500元,設(shè)月利潤(rùn)為W甲(元)
(利潤(rùn)=銷(xiāo)售額﹣成本﹣廣告費(fèi)).
若只在乙城市銷(xiāo)售,銷(xiāo)售價(jià)格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷(xiāo)量為x(件)時(shí),每月還需繳納 x2元的附加費(fèi),設(shè)月利潤(rùn)為W乙(元)(利潤(rùn)=銷(xiāo)售額﹣成本﹣附加費(fèi)).
(1)當(dāng)x=1000時(shí),y甲=元/件,w甲=元;
(2)分別求出W甲 , W乙與x間的函數(shù)關(guān)系式(不必寫(xiě)x的取值范圍);
(3)當(dāng)x為何值時(shí),在甲城市銷(xiāo)售的月利潤(rùn)最大?若在乙城市銷(xiāo)售月利潤(rùn)的最大值與在甲城市銷(xiāo)售月利潤(rùn)的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷(xiāo)售完,請(qǐng)你通過(guò)分析幫公司決策,選擇在甲城市還是在乙城市銷(xiāo)售才能使所獲月利潤(rùn)較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),△ABD的周長(zhǎng)為16cm,則△DOE的周長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為60米,寬為40米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)用含a的式子表示花圃的面積.
(2)如果通道所占面積是整個(gè)長(zhǎng)方形空地面積的 , 求出此時(shí)通道的寬.
(3)已知某園林公司修建通道、花圃的造價(jià)y1(元)、y2(元)與修建面積x(m2)之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的通道的寬度不少于2米且不超過(guò)10米,那么通道寬為多少時(shí),修建的通道和花圃的總造價(jià)最低,最低總造價(jià)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com