【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標(biāo)為(10,8),則點E的坐標(biāo)為

【答案】(10,3)
【解析】解:∵四邊形A0CD為矩形,D的坐標(biāo)為(10,8), ∴AD=BC=10,DC=AB=8,
∵矩形沿AE折疊,使D落在BC上的點F處,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
∴FC=10﹣6=4,
設(shè)EC=x,則DE=EF=8﹣x,
在Rt△CEF中,EF2=EC2+FC2 , 即(8﹣x)2=x2+42 , 解得x=3,
即EC的長為3.
∴點E的坐標(biāo)為(10,3),
故答案為:(10,3).

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理來求OF=6,然后設(shè)EC=x,則EF=DE=8﹣x,CF=10﹣6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點O為其交點.

(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動點.
(Ⅰ)當(dāng)PN+PD的長度取得最小值時,求BP的長度;
(Ⅱ)如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與EFGH均為正方形,點B、F在函數(shù)y= (x>0)的圖象上,點G、C在函數(shù)y=﹣ (x<0)的圖象上,點A、D在x軸上,點H、E在線段BC上,則點G的縱坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運動品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進(jìn)價和售價如下表.已知購進(jìn)60雙甲種運動鞋與50雙乙種運動鞋共用10000元

運動鞋價格

進(jìn)價(元/雙)

m

m﹣20

售價(元/雙)

240

160


(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進(jìn)價)超過21000元,且不超過22000元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某林場計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4 ,則△CEF的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C、D是半圓的三等分點,延長AC,BD交于點E.
(1)求∠E的度數(shù);
(2)點M為BE上一點,且滿足EMEB=CE2 , 連接CM,求證:CM為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣2|++2﹣1﹣cos60°.

查看答案和解析>>

同步練習(xí)冊答案