【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注.當市場豬肉的平均價格每千克達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%.某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日,豬肉價格為每千克40元.5月21日,某市決定投入儲備豬肉并規(guī)定其銷售價在每千克40元的基礎(chǔ)上下調(diào)a%出售.某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為每千克40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的 ,兩種豬肉銷售的總金額比5月20日提高了 a%,求a的值.
【答案】
(1)
解:設(shè)今年年初豬肉價格為每千克x元;
根據(jù)題意得:2.5×(1+60%)x≥100,
解得:x≥25.
答:今年年初豬肉的最低價格為每千克25元
(2)
解:設(shè)5月20日兩種豬肉總銷量為1;
根據(jù)題意得:40(1﹣a%)× (1+a%)+40× (1+a%)=40(1+ a%),
令a%=y,原方程化為:40(1﹣y)× (1+y)+40× (1+y)=40(1+ y),
整理得:5y2﹣y=0,
解得:y=0.2,或y=0(舍去),
則a%=0.2,
∴a=20;
答:a的值為20
【解析】(1)設(shè)今年年初豬肉價格為每千克x元;根據(jù)題意列出一元一次不等式,解不等式即可;(2)設(shè)5月20日兩種豬肉總銷量為1;根據(jù)題意列出方程,解方程即可.本題考查了一元一次不等式的應用、一元二次方程的應用;根據(jù)題意列出不等式和方程是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解七年級男生體質(zhì)健康情況,隨機抽取若干名男生進行測試,測試結(jié)果分為優(yōu)秀、良好、合格、不合格四個等級,統(tǒng)計整理數(shù)據(jù)并繪制圖1、圖2兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:
(1)本次接收隨機抽樣調(diào)查的男生人數(shù)為 人,扇形統(tǒng)計圖中“良好”所對應的圓心角的度數(shù)為 。
(2)補全條形統(tǒng)計圖中“優(yōu)秀”的空缺部分。
(3)若該校七年級共有男生480人,請估計全年級男生體質(zhì)健康狀況達到“良好”的人數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
(1)求證:AC=CD;
(2)若OC=,求BH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生體質(zhì),某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)= .
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點B作BE⊥AD,BF⊥CD,垂足分別為點E,F(xiàn),延長BD至G,使得DG=BD,連結(jié)EG,F(xiàn)G,若AE=DE,則 = .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com