【題目】如圖,平行四邊形ABCD中,點(diǎn)EBC邊上一點(diǎn),AEBD交于點(diǎn)F,已知ABF的面積等于 6,BEF的面積等于4,則四邊形CDFE的面積等于___________

【答案】11

【解析】

利用三角形面積公式得到AFFE=32,再根據(jù)平行四邊形的性質(zhì)得到ADBESABD=SCBD,則可判斷△AFD∽△EFB,利用相似的性質(zhì)可計算出SAFD=9,所以SABD=SCBD=15,然后用△BCD的面積減去△BEF的面積得到四邊形CDFE的面積.

解:∵△ABF的面積等于6△BEF的面積等于4,

SABFSBEF=64=32

AFFE=32,

∵四邊形ABCD為平行四邊形,

ADBE,SABD=SCBD,

∴△AFD∽△EFB

,

SAFD=×4=9

SABD=SCBD=6+9=15,

∴四邊形CDFE的面積=15-4=11

故答案為11

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b-2).

(1)直接寫出點(diǎn)C1的坐標(biāo);

(2)在圖中畫出△A1B1C1;

(3)求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y2x的圖象與反比例函數(shù)yx0),yx0)的圖象分別交于P,Q兩點(diǎn),點(diǎn)POQ的中點(diǎn),RtABC的直角頂點(diǎn)A是雙曲線yx0)上一動點(diǎn),頂點(diǎn)B,C在雙曲線yx0)上,且兩直角邊均與坐標(biāo)軸平行.

1)直接寫出k的值;

2)△ABC的面積是否變化?若不變,求出△ABC的面積;若變化,請說明理由;

3)直線y2x是否存在點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下面的證明過程補(bǔ)充完整,括號內(nèi)寫上相應(yīng)理由或依據(jù):已知,如圖,,,垂足分別為D、F,,請試說明.

證明:∵,(已知)

(____________________________)

________(____________________________)

________(____________________________)

又∵(已知)

________(____________________________)

________(____________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:,

1)請找出圖中一對全等的三角形,并說明理由;

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為節(jié)約用水,某市規(guī)定三口之家每月標(biāo)準(zhǔn)用水量為立方米,超過部分加價收費(fèi),假設(shè)不超過部分水費(fèi)為/立方米,超過部分水費(fèi)為/立方米.

請用代數(shù)式分別表示這家按標(biāo)準(zhǔn)用水和超出標(biāo)準(zhǔn)用水各應(yīng)繳納的水費(fèi);

如果這家某月用水立方米,那么該月應(yīng)交多少水費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將4個數(shù)a,b,c,d排成2行、2列,兩邊各加一條豎直線記成,定義adbc,上述記號就叫做2階行列式.若=-20,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典書,書中有一個問題:今有黃金九枚,白銀一十一枚,稱之重適等;交易其一,金輕十三兩.問金、銀一枚各重幾何?意思是甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,則可列方程組為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式5+3+=M ,當(dāng)=0時,M=-5,當(dāng)=-3時,M=7,那么當(dāng)=3時,M_______.

查看答案和解析>>

同步練習(xí)冊答案