【題目】在ABCD中,若∠BAD與∠ABC的角平分線分別交CD于點E,F,且AD=2EF=2,則AB=___.
【答案】3或5.
【解析】
AE與BF相交,由于平行四邊形的兩組對邊互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,則DE=AD=2;同理可得,CF=CB=2,而EF=CF+DE-DC,由此可以求出AB長.
AE與BF不相交,由于平行四邊形的兩組對邊互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,則DE=AD=2;同理可得,CF=CB=2,而EF=DC-(DE+CF),由此可以求出AB長.
AE與BF相交,如圖所示:∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥CB,
∴∠EAB=∠DEA,
∴∠DAE=∠AED,
則AD=DE=2;
同理可得,CF=CB=2.
∵EF=DE+CF-DC=2+2-CD=1.
∴AB=DC=3;
AE與BF不相交,如圖所示:∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥CB,
∴∠EAB=∠DEA,
∴∠DAE=∠AED,
則AD=DE=2;
同理可得,CF=CB=2.
∵EF=DC-(DE+CF)=CD-(2+2)=1.
∴AB=DC=5.
故答案為:3或5.
科目:初中數學 來源: 題型:
【題目】如圖1,一次函數的圖象與y軸交于點A,與反比例函數的圖象交于點.
______;______;
點C是線段AB上的動點與點A、B不重合,過點C且平行于y軸的直線l交這個反比例函數的圖象于點D,求面積的最大值;
將中面積取得最大值的沿射線AB方向平移一定的距離,得到,若點O的對應點落在該反比例函數圖象上如圖,則點的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點A1(1,1),第二次向右跳動3個單位至點A2(2,1),第三次跳動至點A3(2,2),第四次向右跳動5個單位至點A4(3,2),…,以此規(guī)律跳動下去,點A第100次跳動至點A100的坐標是()
A.(50,50)B.(51,51)C.(51,50)D.(50,51)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明學習了《有理數》后,對運算非常感興趣,于是定義了一種新運算“△”規(guī)則如下:對于兩個有理數m , n , m △ n =.
(1)計算:1△(-2)= ;
(2)判斷這種新運算是否具有交換律,并說明理由;
(3)若a =| x-1| , a =| x-2|,求a△ a (用含 x 的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCO的兩邊OA、OC在坐標軸的正半軸上,軸,,以直線為對稱軸的拋物線過A,B,C三點.
求該拋物線的函數解析式;
已知拋物線交x軸的負半軸于點D,直線BD交y軸于點N,點是線段AD上一個動點,過點E作x軸的垂線交直線BD于點P,交拋物線于點F,求當時相應的m的值.
在的條件下,連接CP以CP為一邊向外作正方形CPGH,如圖2所示,當正方形的頂點G或頂點H隨著點E的運動落在拋物線上時,直接寫出此時點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=____.45°;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用36000元購進甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.
(1)該商場購進甲、乙兩種商品各多少件?
(2)商場第二次以原進價購進甲、乙兩種商品,購進乙種商品的件數不變,而購進甲種商品的件數是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經營活動獲利不少于8160元,乙種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數y=kx+b的圖象過點D和M,反比例函數y=的圖象經過點D,與BC的交點為N.
(1)求反比例函數和一次函數的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com